Artificial Intelligence Planning

Advanced Topics

Artificial Intelligence Planning

• Advanced Topics
Overview

- Before We Plan
- Plan Generation
- Scheduling (Resources)
- After We Plan
Knowledge Engineering

- problem formulation is vital for efficient problem-solving
- knowledge engineering phases (iterative process):
 - requirements specification
 - knowledge modelling
 - model analysis (verification and validation)
 - deploying the model (to the planner)
 - plan synthesis
 - plan-analysis and post-design
- learning domain models

Knowledge Engineering

- problem formulation is vital for efficient problem-solving
- knowledge engineering phases (iterative process):
 - requirements specification
 - elicitation, analysis and validation of requirements from domain experts
 - knowledge modelling
 - construction of a formal (human-understandable) model
 - model analysis (verification and validation)
 - using a domain expert
 - deploying the model (to the planner)
 - export model in formalism suitable for planner
 - plan synthesis
 - plan-analysis and post-design
 - analyse usability of plans (using metrics)
- learning domain models
 - automatically construct domain models
The Frame Problem

• problem: need to represent a long list of facts that are not changed by an action

• the frame problem: construct a formal framework for reasoning about actions and change in which the non-effects of actions do not have to be enumerated explicitly

• approaches:
 – use a different style of representation in first-order logic (same formalism)
 – use a different logical formalism, e.g. non-monotonic logic
 – write a procedure that generates the right conclusions and forget about the frame problem

The Frame Problem
• problem: need to represent a long list of facts that are not changed by an action
 • example: extend domain with new relation; must examine all operators (elaboration tolerance)

• the frame problem: construct a formal framework for reasoning about actions and change in which the non-effects of actions do not have to be enumerated explicitly

• approaches:
 • use a different style of representation in first-order logic (same formalism)
 • different from original style, which was the situation calculus
 • use a different logical formalism, e.g. non-monotonic logic
 • write a procedure that generates the right conclusions and forget about the frame problem
 • all the work described on this course falls under this
Overview

• Before We Plan
• Plan Generation
• Scheduling (Resources)
• After We Plan
Planning as SAT-Solving

- **planning problem**
 - actually: bounded propositional planning problem
- **SAT problem**
 - set of propositional clauses
- **SAT solution**
 - assignment of truth values to propositions
- **plan**
Planning with Uncertainty

• problem: outcome of actions may be uncertain

• approach: belief state search
 – belief state: set of world states, one of which is actual state
 – solution plan is sequence of actions

• approach: contingency planning
 – represent possible outcomes of actions as contingencies
 – solution plan is a tree structure with observation actions
Probabilistic Planning

• Partially Observable Markov Decision Processes
 – set of world states S
 – set of actions A; applicable in $s \in S$: $A(s) \subseteq A$
 – cost function: $c(a, s) > 0$ for $s \in S$ and $a \in A$
 – transition probabilities: $P_{a}(s'|s)$ for $s, s' \in S$ and $a \in A$

 – initial belief state (probability distribution over S)
 – final belief state

 – solution (policy): function from states to actions
 – optimal policy: minimal expected cost
Planning with Time

• heuristic search: A* takes action cost into account

• time in partial plans (HTN with temporal constraints):
 – time point networks
 – interval algebra

 - i_i before i_j: $[i_i, b i_j]$
 - i_i meets i_j: $[i_i, m i_j]$
 - i_i overlaps i_j: $[i_i, o i_j]$
 - i_i starts i_j: $[i_i, s i_j]$
 - i_i during i_j: $[i_i, d i_j]$
 - i_i finishes i_j: $[i_i, f i_j]$

• durative actions: actions take (known amount of) time, have start and finish (time points)

• heuristic search: A* takes action cost into account
 • MetricFF can plan with durative actions

• time in partial plans (HTN with temporal constraints):
 • plan refinement asserts new constraints; network must remain consistent
 • time point networks
 • interval algebra
 • more expressive than time point algebra
Learning to Plan (Better)

• general idea
 – let planner solve a series of (similar) planning problems
 – analyse problem-solving performed by planner
 – feed back analysis results into planning process

• learning macro-operations

• learning search control knowledge
Multi-Agent Planning

- problem: no single agent in control
 - agents with different beliefs
 - agents with different capabilities
 - agents with joint goal
 - agents with individual (conflicting) goals
- joint actions
Overview

- Before We Plan
- Plan Generation
- Scheduling (Resources)
- After We Plan
Scheduling (Resources)

• resources: an entity needed to perform an action
 – state variables: modified by actions in absolute ways
 – resource variables: modified by actions in relative ways

• resource types:
 – reusable vs. consumable
 – discrete vs. continuous
 – unary
 – sharable
 – resources with states

• example: move(r,l,l'):
 • location changes from l to l'

• example: move(r,l,l'):
 • fuel level changes from f to f-f'

• reusable vs. consumable

• discrete vs. continuous
 • countable number of units: cranes, bolts
 • real-valued amount: bandwidth, electricity

• unary
 • $Q_r=1$; exactly one resource of this type available

• sharable
 • can be used by several actions at the same time

• resources with states
 • actions may require resources in specific state
Planning and Scheduling

• planning:
 • input: initial state, operators, goal
 • output: action sequence

• planning with time:
 • output: action sequence with start/finish times
 • time may invalidate out solution plans

• planning with resources:
 • output: action sequence with resources assigned to actions
 • resource availability may invalidate solution plans

• planning with time and resources:
 • not a sequential process!
Overview

• Before We Plan
• Plan Generation
• Scheduling (Resources)
• After We Plan
Plan Execution

- problem: real world differs from model described by Σ
- more realistic model: interleaved planning and execution
 - plan supervision
 - plan revision
 - re-planning
- dynamic planning: closed loop between planner and controller
 - execution status

Plan Execution

- problem: physical system differs from model described by Σ
 - planner only has access to model (description of Σ)
 - controller must cope with differences between Σ and real world
- more realistic model: interleaved planning and execution
 - plan supervision: detect when observations differ from expected results
 - plan revision: adapt existing plan to new circumstances
 - re-planning: generate a new plan from current (initial) state
- dynamic planning: closed loop between planner and controller
 - execution status
Multiple Agents

• coordination
 – ordering constraints between actions assigned to different agents
 – actions with shared (limited) resources
 – joint actions
• communication
 – plans may involve communication actions (for coordination)
 – observation actions: communicate results
• execution failure recovery
 – local plan repair
 – propagation of changes to the plan (de-commitment)
Overview

• Before We Plan
• Plan Generation
• Scheduling (Resources)
• After We Plan