Artificial Intelligence Planning

Advanced Heuristics
The FF Planner

• performs forward state-space search (A* / EHC)
• relaxed problem heuristic (h^{FF})
 – construct relaxed problem: ignore delete lists
 – solve relaxed problem (in polynomial time)
 • chain forward to build a relaxed planning graph
 • chain backward to extract a relaxed plan from the graph
 – use length of relaxed plan as heuristic value
• pruned search with helpful actions

The FF Planner
• a state-of-the-art planner that uses an efficient and accurate heuristic
Overview

- Simple Planning Graph Heuristics
- Pattern Database Heuristics
- The FF Planner
Forward State-Space Search with A*

• A* is optimally efficient: For a given heuristic function, no other algorithm is guaranteed to expand fewer nodes than A*.

• room for improvement: use better heuristic function!

Forward State-Space Search with A*
• A* is optimally efficient: For a given heuristic function, no other algorithm is guaranteed to expand fewer nodes than A*.
 • all planning algorithms seen so far use search
 • given an admissible heuristic and the need for a minimal length plan, we cannot do better than A*
 • caveats: only have non-admissible heuristic; do not need optimal solution; not enough memory
• room for improvement: use better heuristic function!
 • perfect heuristic uses linear time and memory
 • often: expensive but more accurate heuristic works better
Planning Graph Heuristics

- basic idea: use reachability analysis as a heuristic for forward search
 - $P = (A, s_i, g)$ be a propositional planning problem and $G = (N, E)$ the corresponding planning graph
 - $g = \{g_1, \ldots, g_n\}$
 - $g_k, k \in [1, n]$, is reachable from s_i if there is a proposition layer P_g such that $g_k \in P_g$
 - in proposition layer P_m: if g_k not in P_m then g_k not reachable in m steps

- define (admissible) $h_{PG}(g_k) = m$ for reachable $\{g_k\}$
Graphplan: Heuristic

- goal: \{a2, b1\}
 - goal consists of two propositions
- \(h_{PG}(a2) = 3\)
 - first proposition layer in which \(a2\) holds
- \(h_{PG}(b1) = 3\)
 - first proposition layer in which \(b1\) holds
Multiple Goal Conditions

• $P = (A,s_i,g), g = \{g_1, \ldots, g_n\}$

• option 1: take the maximum
 – still admissible
 – bad accuracy, especially for independent goals

• option 2: add the values
 – no longer admissible
 – inaccurate for dependent goals

example dependency between at and occupied relations

• note: no mutex relations required
Overview

- Simple Planning Graph Heuristics
- Pattern Database Heuristics
- The FF Planner
Sub-Problems and Heuristics

- cost of the optimal solution of sub-problem ≤ cost of the optimal solution of complete problem

- sub-problem here: move tiles 1 to 4 into their correct positions
- but: must compute heuristic; search is expensive
- size of “abstract” search space is smaller
Pattern Databases

- idea: pre-compute and store the solution costs for all possible sub-problems in database
- computing heuristic = DB lookup
- construct DB by searching backwards from the goal state and recording costs
 - very expensive operation, but needs to be computed only once

Pattern Databases

- idea: pre-compute and store the solution costs for all possible sub-problems in database
- computing heuristic = DB lookup
- construct DB by searching backwards from the goal state and recording costs
 - very expensive operation, but needs to be computed only once
- size of DB: depends on sub-problem
 - for 8-puzzle: permutations of *-tiles irrelevant: saving factor 4! = 24 over search space size
 - permutations irrelevant, but moves do count towards solution cost
- results achieved: pattern databases give better heuristic values than e.g. Manhattan distance
Choosing Patterns

- choose such that pattern DB fits into memory (and still leaves space for search algorithm)
- exploit symmetry and use composite heuristic

patterns for 8-puzzle: irrelevant as whole search space fits into memory; different for 15/24-puzzles

exploit symmetry and use composite heuristic

symmetry: example: position of 6 tiles in 15-puzzle can be re-used in 8 sub-problems
Disjoint Pattern Databases

• Can we add the values instead of taking the maximum? – No, because the solutions to the different sub-problems share moves.

• idea: record just the cost of moving the non-\(^*\)-tiles in the pattern DB

• sum is admissible heuristic if patterns do not overlap

Disjoint Pattern Databases

• Can we add the values instead of taking the maximum? – No, because the solutions to the different sub-problems share moves.

• no, if we still want an admissible heuristic

• idea: record just the cost of moving the non-\(^*\)-tiles in the pattern DB

• sum is admissible heuristic if patterns do not overlap

• picture: 24-puzzle with pattern consisting of 6 tiles, non-overlapping, with symmetric re-usability

• disjoint pattern DBs currently state of the art (for 24-puzzle);

• not applicable to every problem yet (e.g. Rubik’s cube);
Planning with Pattern Databases

• divide set of all state propositions into mutually exclusive (disjoint) groups: $G_1 \ldots G_k$

• construct abstract problem spaces
 – modified goals: goals from even groups + goals from odd groups
 – modify operators: intersect preconditions/effects with corresponding groups

• construct pattern database

• result:
 – heuristic computes in constant time (hash table lookup)
 – pattern database is disjoint
 – pattern database slow to compute, but reusable
 – reusability is limited (e.g. cannot change goal or increase number of containers)

Planning with Pattern Databases
• divide set of all state propositions into mutually exclusive (disjoint) groups
 • example: r1 and r2 in same group
 • usually several ways to do this
 • need additional symbol "true" for groups that may not hold

• construct abstract problem spaces
 • divide groups, e.g. even and odd groups
 • modified goals: goals from even groups + goals from odd groups
 • modify operators: intersect preconditions/effects with corresponding groups

• construct pattern database
 • use breadth-first backward search in abstract spaces
 • note: search tree in abstract space shrinks exponentially

• result:
 • heuristic computes in constant time (hash table lookup)
 • pattern database is disjoint
 • pattern database slow to compute, but reusable
 • reusability is limited (e.g. cannot change goal or increase number of containers)
Overview

• Simple Planning Graph Heuristics
• Pattern Database Heuristics
• The FF Planner
The FF Planner

- performs forward state-space search (A* / EHC)
- relaxed problem heuristic (h^{FF})
 - construct relaxed problem: ignore delete lists
 - solve relaxed problem (in polynomial time)
 - chain forward to build a relaxed planning graph
 - chain backward to extract a relaxed plan from the graph
 - use length of relaxed plan as heuristic value
- pruned search with helpful actions

\[h^{FF} \]

The FF Planner

- performs forward state-space search (A* / EHC)
 - EHC: commit first to better state; does not work well if state space has dead ends
- relaxed problem heuristic (h^{FF})
 - construct relaxed problem: ignore delete lists
 - Joerg's example: have a beer, drink the beer, have the beer in tummy, still have a beer!
 - solve relaxed problem (in polynomial time)
 - chain forward to build a relaxed planning graph
 - chain backward to extract a relaxed plan from the graph
 - use length of relaxed plan as heuristic value
- pruned search with helpful actions
 - use information gained during the computation of the heuristic value
Relaxed Planning Problem: Example

- **move**(r,l,l')
 - precond: at(r,l), adjacent(l,l')
 - effects: at(r,l'), ¬at(r,l)
- **load**(c,r,l)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)
- **unload**(c,r,l)
 - precond: at(r,l), loaded(r,c)
 - effects: unloaded(r), in(c,l), ¬loaded(r,c)

Relaxed Planning Problem: Example

- **move**(r,l,l')
 - precond: at(r,l), adjacent(l,l')
 - effects: at(r,l'), ¬at(r,l)
 - robot now in two places
- **load**(c,r,l)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), ¬in(c,l), ¬unloaded(r)
 - container now in two places
- **unload**(c,r,l)
 - precond: at(r,l), loaded(r,c)
 - effects: unloaded(r), in(c,l), ¬loaded(r,c)
 - container again in two places
Computing h^{FF}: Relaxed Planning Graph

function computeRPG(A, s_i, g)

$F_0 \leftarrow s_i$; $t \leftarrow 0$

while $g \not\in F_t$

$t \leftarrow t + 1$

$A_t \leftarrow \{a \in A \mid \text{precond}(a) \subseteq F_t\}$

$F_t \leftarrow F_{t-1}$

for all $a \in A_t$

$F_t \leftarrow F_t \cup \text{effects}^+(a)$

if $F_t = F_{t-1}$ then return failure

return $[F_0, A_1, F_1, \ldots, A_t, F_t]$

• similar to planning graph expansion
 • no mutex relations needed
 • stops when goal first appears
Computing h^{FF}: Extracting a Relaxed Plan

function extractRPSize([F_0,A_1, F_1,\ldots,A_k,F_k], g)
 if g \not\subseteq F_k then return failure
 M \leftarrow \max\{\text{firstlevel}(g, [F_0,\ldots,F_k]) \mid g_i \in g\}
 for t \leftarrow 0 to M do
 G_t \leftarrow \{g_i \in g \mid \text{firstlevel}(g, [F_0,\ldots,F_k]) = t\}
 for t \leftarrow M to 1 do
 for all g_t \in G_t do
 select a : firstlevel(a, [A_1,\ldots,A_t]) = t and g_t \in \text{effects}^+(a)
 for all p \in \text{precond}(a) do
 G_{\text{firstlevel}(p, [F_0,\ldots,F_k])} \leftarrow G_{\text{firstlevel}(p, [F_0,\ldots,F_k])} \cup \{p\}
 return number of selected actions

Computing h^{FF}: Extracting a Relaxed Plan

• function extractRPSize([F_0,A_1, F_1,\ldots,A_k,F_k], g)
 • arguments: planning graph and goal
 • if g \not\subseteq F_k then return failure
 • $M \leftarrow \max\{\text{firstlevel}(g, [F_0,\ldots,F_k]) \mid g_i \in g\}$
 • function firstlevel: computes level in PG where proposition first appears
 • for t \leftarrow 0 to M do
 • $G_t \leftarrow \{g_i \in g \mid \text{firstlevel}(g, [F_0,\ldots,F_k]) = t\}$
 • start with goals in level where they first appear
 • for t \leftarrow M to 1 do
 • for all g_t \in G_t do
 • select a : firstlevel(a, [A_1,\ldots,A_t]) = t and g_t \in \text{effects}^+(a)
 • commit to selected action (no backtracking)
 • for all p \in \text{precond}(a) do
 • $G_{\text{firstlevel}(p, [F_0,\ldots,F_k])} \leftarrow G_{\text{firstlevel}(p, [F_0,\ldots,F_k])} \cup \{p\}$
 • sub-goals in levels where they first appear
 • return number of selected actions
• runs in polynomial time
FF: Result

• heuristic is not admissible, but quite accurate

• “Almost all current successful satisficing planners use variations of (some of) these [ideas introduced in FF]!”

FF: Result
• heuristic is not admissible, but quite accurate
 • returned plan not guaranteed to be optimal
• “Almost all current successful satisficing planners use variations of (some of) these [ideas introduced in FF]!”
 • satisficing: type of planner we have looked at
 • successful: in research; most practical planners still based on HTN paradigm
Overview

• Simple Planning Graph Heuristics
• Pattern Database Heuristics
• The FF Planner