Artificial Intelligence Planning

• Graphplan
Graphplan: Overview

- given a propositional planning domain and problem
- step 1: extend the graph with 2 layers (forward, left to right)
 - edges shown are preconditions and effects
 - other edges (not shown) express mutual exclusivity
 - worst-case time complexity is polynomial
- step 2: search for a plan in the graph
 - search backwards (right to left)
 - worst-case time complexity is exponential
- repeat steps 1 and 2
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Classical Representations

- **propositional representation**
 - world state is set of propositions
 - action consists of precondition propositions, propositions to be added and removed

- **STRIPS representation**
 - like propositional representation, but first-order literals instead of propositions

- **state-variable representation**
 - state is tuple of state variables \(\{x_1, \ldots, x_n\} \)
 - action is partial function over states

Classical Representations

propositional representation

- world state is set of propositions
- action consists of precondition propositions, propositions to be added and removed

STRIPS representation

- named after STRIPS planner
- like propositional representation, but first-order literals instead of propositions
- most popular for restricted state-transitions systems

state-variable representation

- state is tuple of state variables \(\{x_1, \ldots, x_n\} \)
- action is partial function over states
- useful where state is characterized by attributes over finite domains

- equally expressive: planning domain in one representation can also be represented in the others
Example: Simplified DWR Problem

- robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- problem: swap locations of containers

Example: Simplified DWR Problem

- initial state:
 - 2 locations: loc1 and loc2, connected by path
 - 2 robots: robr and robq, both unloaded initially at loc1 and loc2 respectively
 - 2 containers: conta and contb, initially at loc1 and loc2 respectively

- robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- problem: swap locations of containers
Simplified DWR Problem: STRIPS Operators

- move\((r,l,l')\)
 - precond: at\((r,l)\), adjacent\((l,l')\)
 - effects: at\((r,l')\), \neg at\((r,l)\)

- load\((c,r,l)\)
 - precond: at\((r,l)\), in\((c,l)\), unloaded\((r)\)
 - effects: loaded\((r,c)\), \neg in\((c,l)\), \neg unloaded\((r)\)

- unload\((c,r,l)\)
 - precond: at\((r,l)\), loaded\((r,c)\)
 - effects: unloaded\((r)\), in\((c,l)\), \neg loaded\((r,c)\)

Simplified DWR Problem: STRIPS Actions

- move\((r,l,l')\)
 - move robot \(r\) from location \(l\) to adjacent location \(l'\) (4 possible actions; with rigid adjacent relation evaluated)
 - precond: at\((r,l)\), adjacent\((l,l')\)
 - effects: at\((r,l')\), \neg at\((r,l)\)

- load\((c,r,l)\)
 - load container \(c\) onto robot \(r\) at location \(l\) (8 possible actions)
 - precond: at\((r,l)\), in\((c,l)\), unloaded\((r)\)
 - effects: loaded\((r,c)\), \neg in\((c,l)\), \neg unloaded\((r)\)

- unload\((c,r,l)\)
 - unload container \(c\) from robot \(r\) at location \(l\) (8 possible actions)
 - precond: at\((r,l)\), loaded\((r,c)\)
 - effects: unloaded\((r)\), in\((c,l)\), \neg loaded\((r,c)\)
Simplified DWR Problem: State Proposition Symbols

- robots:
 - r_1 and r_2: $\text{at}(\text{robr}, \text{loc}1)$ and $\text{at}(\text{robr}, \text{loc}2)$
 - q_1 and q_2: $\text{at}(\text{robq}, \text{loc}1)$ and $\text{at}(\text{robq}, \text{loc}2)$
 - ur and uq: $\text{unloaded}(\text{robr})$ and $\text{unloaded}(\text{robq})$

- containers:
 - a_1, a_2, ar, and aq: $\text{in}(\text{conta}, \text{loc}1)$, $\text{in}(\text{conta}, \text{loc}2)$, $\text{loaded}(\text{conta}, \text{robr})$, and $\text{loaded}(\text{conta}, \text{robq})$
 - b_1, b_2, br, and bq: $\text{in}(\text{contb}, \text{loc}1)$, $\text{in}(\text{contb}, \text{loc}2)$, $\text{loaded}(\text{contb}, \text{robr})$, and $\text{loaded}(\text{contb}, \text{robq})$

- initial state: \{r1, q2, a1, b2, ur, uq\}
Simplified DWR Problem: Action Symbols

- **move actions:**
 - Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)

- **load actions:**
 - Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lbr1, Lbr2, Lbq1, and Lbq2 correspondingly

- **unload actions:**
 - Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, and Ubq2 correspondingly

*14 state symbols: lower case, italic
*20 action symbols: uppercase, not italic
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Solution Existence

• **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma, \sigma, g)$ has a solution iff
 $$S_g \cap \Gamma^\prec\{(s)\} \neq \emptyset.$$

• **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma, \sigma, g)$ has a solution iff
 $$\exists s \subseteq \Gamma^\prec\{(g)\} : s \subseteq s_r.$$

Solution Existence

• **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma, \sigma, g)$ has a solution iff $S_g \cap \Gamma^\prec\{(s)\} \neq \emptyset$.
 • ... iff there is a goal state that is also a reachable state

• **Proposition**: A propositional planning problem $\mathcal{P}=(\Sigma, \sigma, g)$ has a solution iff
 $$\exists s \subseteq \Gamma^\prec\{(g)\} : s \subseteq s_r.$$
 • ... iff there is a minimal set of propositions amongst all regression sets that is a subset of the initial state
Reachability Tree

- tree structure, where:
 - root is initial state s_i
 - children of node s are $\Gamma(\{s\})$
 - arcs are labelled with actions
- all nodes in reachability tree are $\Gamma^\ast(\{s_i\})$
 - all nodes to depth d are $\Gamma^d(\{s_i\})$
 - solves problems with up to d actions in solution

- problem: $O(k^d)$ nodes;
 $k = \text{applicable actions per state}$
Planning Graph: Nodes

• layered directed graph $G=(N,E)$:

 $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$

 • state proposition layers: P_0, P_1, \ldots

 • action layers: A_1, A_2, \ldots

• first proposition layer P_0:

 • propositions in initial state s_i: $P_0 = s_i$

• action layer A_j:

 • all actions a where: $\text{precond}(a) \subseteq P_{j-1}$

• proposition layer P_j:

 • all propositions p where: $p \in P_{j-1}$ or $\exists a \in A_j: p \in \text{effects}^+(a)$

Planning Graph: Nodes

• layered directed graph $G=(N,E)$:

 • layered = each node belongs to exactly one layer

 • $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$

 • proposition and action layers alternate

 • state proposition layers: P_0, P_1, \ldots

 • action layers: A_1, A_2, \ldots

• first proposition layer P_0:

 • propositions in initial state s_i: $P_0 = s_i$

• action layer A_j:

 • all actions a where: $\text{precond}(a) \subseteq P_{j-1}$

• proposition layer P_j:

 • all propositions p where: $p \in P_{j-1}$ or $\exists a \in A_j: p \in \text{effects}^+(a)$

 • propositions at layer P_j are all propositions in the union of all nodes in the reachability tree at depth j

 • note: negative effects are not deleted from next layer

• note: $P_{j+1} \subseteq P_j$; propositions in the graph monotonically increase from one proposition layer to the next
Planning Graph: Edges

• from proposition $p \in P_{j-1}$ to action $a \in A_j$:
 – if: $p \in \text{precond}(a)$
• from action $a \in A_j$ to layer $p \in P_j$:
 – positive arc if: $p \in \text{effects}^+(a)$
 – negative arc if: $p \in \text{effects}^-(a)$

• no arcs between other layers

Planning Graph: Arcs

• directed and layered = arcs only from one layer to the next
• from proposition $p \in P_{j-1}$ to action $a \in A_j$:
 • if: $p \in \text{precond}(a)$
• from action $a \in A_j$ to layer $p \in P_j$:
 • positive arc if: $p \in \text{effects}^+(a)$
 • negative arc if: $p \in \text{effects}^-(a)$

• no arcs between other layers

• note: $A_{j-1} \subseteq A_j$; actions in the graph monotonically increase from one action layer to the next
Planning Graph Example

- start with initial proposition layer
- next action layer: applicable action; links from preconditions (black)
- next proposition layer: previous proposition plus positive effects; links to positive effects (green); links to negative effects (red)
- next action layer \((A_2)\); precondition links; next proposition layer \((P_2)\); effect links
- next action layer \((A_3)\); precondition links; next proposition layer \((P_3)\); effect links
- action layers contain “inclusive disjunctions” of actions
Reachability in the Planning Graph

- reachability analysis:
 - if a goal g is reachable from initial state s_i
 - then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_g$

- necessary condition, but not sufficient
- low complexity:
 - planning graph is of polynomial size and
 - can be computed in polynomial time

Reachability in the Planning Graph
- reachability analysis:
 - if a goal g is reachable from initial state s_i
 - then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_g$
 - or: if no proposition layer contains g then g is not reachable

- necessary condition, but not sufficient
 - necessary vs. sufficient:
 - reachability tree:
 - nodes contain propositions that must necessarily hold
 - propositions in one node are consistent
 - planning graph:
 - proposition layers contains propositions that may possibly hold
 - propositions in one layer usually inconsistent (e.g. robots/containers in two places at once)
 - similarly, incompatible actions in one layer may interfere with each other

- low complexity:
 - planning graph is of polynomial size and
 - can be computed in polynomial time
 - need more conditions (for sufficient criterion)
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Independent Actions: Examples

- Mr12 and Lar1:
 - cannot occur together
 - Mr12 deletes precondition r_1 of Lar1
- Mr12 and Mr21:
 - cannot occur together
 - Mr12 deletes positive effect r_1 of Mr21
- Mr12 and Mq21:
 - may occur in same action layer
Independent Actions

• Two actions a_1 and a_2 are independent iff:
 – $\text{effects}(a_1) \cap (\text{precond}(a_2) \cup \text{effects}^+(a_2)) = \emptyset$ and
 – $\text{effects}(a_2) \cap (\text{precond}(a_1) \cup \text{effects}^+(a_1)) = \emptyset$.

• A set of actions π is independent iff every pair of actions $a_1, a_2 \in \pi$ is independent.

Independent Actions

• idea: independent actions can be executed in any order (in same layer)

• Two actions a_1 and a_2 are independent iff:
 • $\text{effects}(a_1) \cap (\text{precond}(a_2) \cup \text{effects}^+(a_2)) = \emptyset$ and
 • $\text{effects}(a_2) \cap (\text{precond}(a_1) \cup \text{effects}^+(a_1)) = \emptyset$.
 • two actions are dependent iff:
 • one deletes a precondition of the other or
 • one deletes a positive effect of the other

• A set of actions π is independent iff every pair of actions $a_1, a_2 \in \pi$ is independent.

• note: independence does not depend on planning problem; can be pre-computed

• note: independence relation is symmetrical (follows from definition)
function independent(a₁, a₂)
 for all p ∈ effects⁺(a₁)
 if p ∈ precond(a₂) or p ∈ effects⁻(a₂) then
 return false
 for all p ∈ effects⁻(a₂)
 if p ∈ precond(a₁) or p ∈ effects⁺(a₁) then
 return false
 return true

Pseudo Code: independent

• function independent(a₁, a₂)
 • returns true iff the two given actions are independent
• for all p ∈ effects⁺(a₁)
 • if p ∈ precond(a₂) or p ∈ effects⁺(a₂) then
 • return false
• for all p ∈ effects⁻(a₂)
 • if p ∈ precond(a₁) or p ∈ effects⁻(a₁) then
 • return false
• return true
• complexity:
 • let b be max. number of preconditions, positive, and negative effects of any action
 • element test in hash-set takes constant time
 • complexity: O(b)
Applying Independent Actions

• A set \(\pi \) of independent actions is **applicable** to a state \(s \) iff
 \[\bigcup_{a \in \pi} \text{precond}(a) \subseteq s. \]

• The **result** of applying the set \(\pi \) in \(s \) is defined as:
 \[\gamma(s,\pi) = (s - \text{effects}^-(\pi)) \cup \text{effects}^+(\pi), \] where:
 – \(\text{precond}(\pi) = \bigcup_{a \in \pi} \text{precond}(a) \),
 – \(\text{effects}^+(\pi) = \bigcup_{a \in \pi} \text{effects}^+(a) \), and
 – \(\text{effects}^-(\pi) = \bigcup_{a \in \pi} \text{effects}^-(a) \).

Applying Independent Actions

- A set \(\pi \) of independent actions is **applicable** to a state \(s \) iff
 \[\bigcup_{a \in \pi} \text{precond}(a) \subseteq s. \]

- Note: applying a set of independent actions can be done in any order.

- The **result** of applying the set \(\pi \) in \(s \) is defined as:
 \[\gamma(s,\pi) = (s - \text{effects}^-(\pi)) \cup \text{effects}^+(\pi), \] where:
 – \(\text{precond}(\pi) = \bigcup_{a \in \pi} \text{precond}(a) \),
 – \(\text{effects}^+(\pi) = \bigcup_{a \in \pi} \text{effects}^+(a) \), and
 – \(\text{effects}^-(\pi) = \bigcup_{a \in \pi} \text{effects}^-(a) \).
Execution Order of Independent Actions

• Proposition: If a set \(\pi \) of independent actions is applicable in state \(s \) then, for any permutation \(\langle a_1, \ldots, a_k \rangle \) of the elements of \(\pi \):
 – the sequence \(\langle a_1, \ldots, a_k \rangle \) is applicable to \(s \), and
 – the state resulting from the application of \(\pi \) to \(s \) is the same as from the application of \(\langle a_1, \ldots, a_k \rangle \), i.e.:
 \[\gamma(s, \pi) = \gamma(s, \langle a_1, \ldots, a_k \rangle) \].
Layered Plans

• Let $P = (A, s, g)$ be a statement of a propositional planning problem and $G = (N, E)$, $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$, the corresponding planning graph.

• A layered plan over G is a sequence of sets of actions: $\Pi = \langle \pi_1, \ldots, \pi_k \rangle$ where:
 – $\pi_i \subseteq A_i \subseteq A$,
 – π_i is applicable in state P_{i-1}, and
 – the actions in π_i are independent.
Layered Solution Plan

A layered plan $\Pi = \langle \pi_1, \ldots, \pi_k \rangle$ is a solution to a planning problem $P=(A, s_i, g)$ iff:

- π_1 is applicable in s_i,
- for $j \in \{2 \ldots k\}$, π_j is applicable in state $\gamma(\ldots \gamma(\gamma(s_i, \pi_1), \pi_2), \ldots \pi_{j-1})$, and
- $g \subseteq \gamma(\ldots \gamma(\gamma(s_i, \pi_1), \pi_2), \ldots, \pi_k)$.

note: independence of actions still not sufficient criterion for solution
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Problem: Dependent Propositions: Example

- r_2 and ar:
 - r_2: positive effect of Mr12
 - ar: positive effect of Lar1
 - but: Mr12 and Lar1 not independent
 - hence: r_2 and ar incompatible in P_1
- r_1 and r_2:
 - positive and negative effects of same action: Mr12
 - hence: r_1 and r_2 incompatible in P_1

Problem: Dependent Propositions: Example

- r_2 and ar:
 - r_2: positive effect of Mr12
 - ar: positive effect of Lar1
 - but: Mr12 and Lar1 not independent
 - dependent actions cannot occur together same set of actions in a layered plan, e.g. in $π_1$
 - hence: r_2 and ar incompatible in P_1

- r_1 and r_2:
 - positive and negative effects of same action: Mr12
 - hence: r_1 and r_2 incompatible in P_1

- both cases: compatible if they are also
 - two positive effects of one action
 - the positive effects of two independent actions
- incompatible propositions: cannot be reached through preceding action layer (A_1)
No-Operation Actions

- No-Op for proposition p:
 - name: A_p
 - precondition: p
 - effect: p
- r_1 and r_2:
 - r_1: positive effect of A_{r_1}
 - r_2: positive effect of M_{r_1}
 - but: A_{r_1} and M_{r_1} not independent
 - hence: r_1 and r_2 incompatible in P_1
- only one incompatibility test

No-Operation Actions

- No-Op for proposition p:
 - for every action layer and every proposition that may persist
 - name: A_p
 - precondition: p
 - effect: p
- r_1 and r_2:
 - r_1: positive effect of A_{r_1}
 - r_2: positive effect of M_{r_1}
 - but: A_{r_1} and M_{r_1} not independent
 - hence: r_1 and r_2 incompatible in P_1
- only one incompatibility test

- previous slide: two types of incompatibility (positive effects of dependent actions + positive and negative effects of same action)
 - with no-ops: only first type needed (simplification)
Mutex Propositions

• Two propositions p and q in proposition layer P_j are mutex (mutually exclusive) if:
 – every action in the preceding action layer A_j that has p as a positive effect (incl. no-op actions) is mutex with every action in A_j that has q as a positive effect, and
 – there is no single action in A_j that has both, p and q, as positive effects.

• notation: $\mu P_j = \{ (p,q) | p,q \in P_j \text{ are mutex} \}$

Mutex Propositions

• Two propositions p and q in proposition layer P_j are **mutex** (mutually exclusive) if:
 • every action in the preceding action layer A_j that has p as a positive effect (incl. no-op actions) is mutex with every action in A_j that has q as a positive effect, and
 • need to define when two actions are mutex
 • obvious case: if they are dependent
 • there is no single action in A_j that has both, p and q, as positive effects.

• notation: $\mu P_j = \{ (p,q) | p,q \in P_j \text{ are mutex} \}$

• note: mutex relation for propositions is symmetrical (follows from definition)

• proposition layer P_1 contains 8 mutex pairs
Pseudo Code: mutex for Propositions

function mutex(p_1,p_2,μ_{A_j})
 for all a_1\in p_1.producers()
 for all a_2\in p_2.producers()
 if (a_1,a_2)\notin μ_{A_j} then
 return false
 return true

Pseudo Code: mutex for Propositions
• function mutex(p_1,p_2, μ_{A_j})
 • input: two propositions (from same layer), mutex relation between the actions in the preceding layer
• for all a_1\in p_1.producers()
 • producers: actions in the preceding layer that have p_1 as a positive effect; should be stored with proposition node
• for all a_2\in p_2.producers()
 • producers: see above
• if (a_1,a_2)\notin μ_{A_j} then
 • test whether the action are in the given set of mutually exclusive actions
• return false
 • if not: consistent producers found; propositions are not mutex
• return true
 • no consistent producers found; propositions are mutex

• note: single action producing both is covered: action cannot be mutex with itself
• complexity: let m be number of actions in domain (incl. no-ops); O(m^2)
Mutex Actions: Example

• r_1 and r_2 are mutex in P_1
• r_1 is precondition for Lar1 in A_2
• r_2 is precondition for Mr21 in A_2
• hence: Lar1 and Mr21 are mutex in A_2

Mutex Actions: Example
• r_1 and r_2 are mutex in P_1
• r_1 is precondition for Lar1 in A_2
• r_2 is precondition for Mr21 in A_2
• hence: Lar1 and Mr21 are mutex in A_2
• dependency between actions in action layer A_j leads to mutex between propositions in P_j
• mutex between propositions in P_j leads to mutex between actions in action layer A_{j+1}
Mutex Actions

• Two actions a_1 and a_2 in action layer A_j are mutex if:
 – a_1 and a_2 are dependent, or
 – a precondition of a_1 is mutex with a precondition of a_2.

• notation: $\mu A_j = \{ (a_1, a_2) \mid a_1, a_2 \in A_j \text{ are mutex} \}$
Pseudo Code: mutex for Actions

```plaintext
function mutex(a_1, a_2, μ_P)
    if ¬independent(a_1, a_2) then
        return true
    for all p_1 ∈ precond(a_1)
        for all p_2 ∈ precond(a_2)
            if (p_1, p_2) ∈ μ_P then return true
    return false
```

Pseudo Code: mutex for Actions

- function mutex(a_1, a_2, μ_P)
 - μ_P – mutex relations from the preceding proposition layer
- if ¬independent(a_1, a_2) then
 - return true
- for all p_1 ∈ precond(a_1)
 - for all p_2 ∈ precond(a_2)
 - if (p_1, p_2) ∈ μ_P then return true
 - return false

- complexity: let b = max number preconditions/pos. effects/neg effects: \(O(b^2)\)
Decreasing Mutex Relations

- **Proposition:** If \(p, q \in P_{j-1} \) and \((p, q) \notin \mu P_{j-1} \) then \((p, q) \notin \mu P_j \).
 - **Proof:**
 - if \(p, q \in P_{j-1} \), then \(A_p, A_q \in A_j \)
 - if \((p, q) \notin \mu P_{j-1} \), then \((A_p, A_q) \notin \mu A_j \)
 - since \(A_p, A_q \in A_j \) and \((A_p, A_q) \notin \mu A_j \), \((p, q) \notin \mu P_j \) must hold

- **Proposition:** If \(a_1, a_2 \in A_{j-1} \) and \((a_1, a_2) \notin \mu A_{j-1} \) then \((a_1, a_2) \notin \mu A_j \).
 - **Proof:**
 - if \(a_1, a_2 \in A_{j-1} \) and \((a_1, a_2) \notin \mu A_{j-1} \) then
 - \(a_1 \) and \(a_2 \) are independent and
 - their preconditions in \(P_{j-1} \) are not mutex
 - both properties remain true for \(P_j \)
 - hence: \(a_1, a_2 \in A_j \) and \((a_1, a_2) \notin \mu A_j \)

- **Proof:** mutex relations are monotonically decreasing (between layers with the same propositions)
Removing Impossible Actions

• actions with mutex preconditions \(p \) and \(q \) are impossible
 – example: preconditions \(r2 \) and \(ar \) of Uar2 in \(A_2 \) are mutex
• can be removed from the graph
 – example: remove Uar2 from \(A_2 \)

• action with mutex preconditions can never be part of any layered plan (will violate applicability condition in definition)
• can be removed from the graph
 • example: remove Uar2 from \(A_2 \)
• mutex pair of actions must remain in graph because one of the actions may be used in final plan
• note: still consistent with monotonically increasing actions
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Reachability in Planning Graphs

• Proposition: Let $P = (A, s_i, g)$ be a propositional planning problem and $G = (N, E)$, $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$, the corresponding planning graph. If g is reachable from s_i then
 • there is a proposition layer P_g such that
 • $g \subseteq P_g$ and
 • $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$.

Reachability in Planning Graphs

• Proposition: Let $P = (A, s_i, g)$ be a propositional planning problem and $G = (N, E)$, $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup \ldots$, the corresponding planning graph. If
 • g is reachable from s_i
 • then
 • there is a proposition layer P_g such that
 • $g \subseteq P_g$ and
 • $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$.
 • still only necessary condition, but relatively efficient to compute
The Graphplan Algorithm: Basic Idea

• expand the planning graph, one action layer and one proposition layer at a time
• from the first graph for which P_g is the last proposition layer such that
 – $g \subseteq P_g$ and
 – $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$
• search backwards from the last (proposition) layer for a solution

The Graphplan Algorithm: Basic Idea

• expand the planning graph, one action layer and one proposition layer at a time
 • similar to iterative deepening: discover new part of the search space with each iteration
• from the first graph for which P_g is the last proposition layer such that
 • $g \subseteq P_g$ and
 • $\neg \exists g_1, g_2 \in g: (g_1, g_2) \in \mu P_g$
 • no need to search for solutions in graph with fewer layers; see last proposition
• search backwards from the last (proposition) layer for a solution
• two major steps:
 • expansion of planning graph to next proposition layer
 • searching a given planning graph for a solution
Planning Graph Data Structure

• \(k \)-th planning graph \(G_k \):
 - nodes \(N \):
 • array of proposition layers \(P_0 \ldots P_k \)
 - proposition layer \(j \): set of proposition symbols
 • array of action layers \(A_1 \ldots A_k \)
 - action layer \(j \): set of action symbols
 - edges \(E \):
 • precondition links: \(pre_j \subseteq P_j \times A_j, j \in \{1 \ldots k\} \)
 • positive effect links: \(e^+_j \subseteq A_j \times P_j, j \in \{1 \ldots k\} \)
 • negative effect links: \(e^-_j \subseteq A_j \times P_j, j \in \{1 \ldots k\} \)
 • proposition mutex links: \(\mu P_j \subseteq P_j \times P_j, j \in \{1 \ldots k\} \)
 • action mutex links: \(\mu A_j \subseteq A_j \times A_j, j \in \{1 \ldots k\} \)

Planning Graph Data Structure

• \(k \)-th planning graph \(G_k \):
 - nodes \(N \):
 • array of proposition layers \(P_0 \ldots P_k \)
 - proposition layer \(j \): set of proposition symbols
 • array of action layers \(A_1 \ldots A_k \)
 - action layer \(j \): set of action symbols
 - edges \(E \):
 • precondition links: \(pre_j \subseteq P_j \times A_j, j \in \{1 \ldots k\} \)
 • positive effect links: \(e^+_j \subseteq A_j \times P_j, j \in \{1 \ldots k\} \)
 • negative effect links: \(e^-_j \subseteq A_j \times P_j, j \in \{1 \ldots k\} \)
 • proposition mutex links: \(\mu P_j \subseteq P_j \times P_j, j \in \{1 \ldots k\} \)
 • action mutex links: \(\mu A_j \subseteq A_j \times A_j, j \in \{1 \ldots k\} \)

• note: instance of this data structure does not depend on problem
• initial planning graph: \(P_0 = s_i \); rest is empty sets
Pseudo Code: expand

function expand(Gk-1)
 Ak ← \{a ∈ A | precond(a) ⊆ Pk-1 and \{(p_1, p_2) | p_1, p_2 ∈ precond(a)\} ∩ μPk-1 = {} \}
 µAk ← \{(a_1, a_2) | a_1, a_2 ∈ Ak, a_1 ≠ a_2, and mutex(a_1, a_2, µP_1)\}
 Pk ← \{p | \exists a ∈ Ak : p ∈ effects^+(a)\}
 µPk ← \{(p_1, p_2) | p_1, p_2 ∈ Pk, p_1 ≠ p_2, and mutex(p_1, p_2, µAk)\}

for all a ∈ Ak
 prek ← prek ∪ \{(p | p ∈ Pk-1 and p ∈ precond(a)) × a\}
 ek^+ ← ek^+ ∪ (a × \{p | p ∈ Pk and p ∈ effects^+(a)\})
 ek^- ← ek^- ∪ (a × \{p | p ∈ Pk and p ∈ effects^-(a)\})
Planning Graph Complexity

- **Proposition:** The size of a planning graph up to level k and the time required to expand it to that level are polynomial in the size of the planning problem.

- **Proof:**
 - problem size: n propositions and m actions
 - $|P| \leq n$ and $|A| \leq n + m$ (incl. no-op actions)
 - algorithms for generating each layer and all link types are polynomial in size of layer
Fixed-Point Levels

• A fixed-point level in a planning graph G is a level κ such that for all $i, i > \kappa$, level i of G is identical to level κ, i.e. $P_i = P_\kappa$, $\mu P_i = \mu P_\kappa$, $A_i = A_\kappa$, and $\mu A_i = \mu A_\kappa$.

• Proposition: Every planning graph G has a fixed-point level κ, which is the smallest k such that $|P_k| = |P_{k+1}|$ and $|\mu P_k| = |\mu P_{k+1}|$.

• Proof:
 – P_i grows monotonically and μP_i shrinks monotonically
 – A_i and P_i only depend on P_{i-1} and μP_{i-1}

Fixed-Point Levels

A fixed-point level in a planning graph G is a level κ such that for all $i, i > \kappa$, level i of G is identical to level κ, i.e. $P_i = P_\kappa$, $\mu P_i = \mu P_\kappa$, $A_i = A_\kappa$, and $\mu A_i = \mu A_\kappa$.

Proposition: Every planning graph G has a fixed-point level κ, which is the smallest k such that $|P_k| = |P_{k+1}|$ and $|\mu P_k| = |\mu P_{k+1}|$.

• $|P_k| = |P_{k+1}|$ implies $P_k = P_{k+1}$

• Proof:
 – P_i grows monotonically and μP_i shrinks monotonically
 • μP_i shrinks monotonically: for equal P_i
 – A_i and P_i only depend on P_{i-1} and μP_{i-1}

• time complexity: $O(n+m)$ from fixed point level; only copying required
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm
Searching the Planning Graph

• general idea:
 – search backwards from the last proposition layer P_k in the current graph
 – let g be the set of goal propositions that need to be achieved at a given proposition layer P_j (initially the last layer)
 – find a set of actions $\pi_j \subseteq A_j$ such that these actions are not mutex and together achieve g
 – take the union of the preconditions of π_j as the new goal set to be achieved in proposition layer P_{j-1}
Planning Graph Search Example

• initial goal: \(a_2 \) and \(b_1 \)
• only one incoming positive effect link per goal (but no-ops not shown)
• achievable with \(Uar_2 \) and \(Ubq_1 \) (which are not mutex; mutex relations not shown)
• precondition links indicate sub-goal at next layer
• new sub-goal at \(P_2: r_2, q_1, ar, bq \)
 • only one incoming positive effect link per goal condition (but no-ops not shown)
 • achieve \(ar \) and \(bq \) with no-ops
 • achieve \(r_2 \) with \(Mr_{12} \) and \(q_1 \) with \(Mq_{21} \)
• precondition links (for \(Mr_{12} \) and \(Mq_{21} \)) indicate some sub-goal at next layer
• complete sub-goal (incl. preconditions of no-ops) at \(P_1: r_1, q_2, ar, bq \)
• only one incoming positive effect link per goal condition (but no-ops not shown)
 • achieve \(r_1 \) and \(q_2 \) with no-ops
 • achieve \(ar \) with \(Lar_1 \) and \(bq \) with \(Lbq_2 \)
• precondition links (for \(Lar_1 \) and \(Lbq_2 \)) indicate some sub-goal at next layer
• complete sub-goal (incl. preconditions of no-ops) at \(P_0: \) complete initial state
Repeated Sub-Goals

- ultimate goal leads to possible sub-goals at P_j
- possible sub-goals at P_j lead to possible sub-goals at P_i
 - search to initial proposition layer to see whether sub-goals can be achieved
 - suppose: sub-goals at P_i cannot be achieved
- backtrack to later layer, say P_j
- possible sub-goals at P_j may lead to same possible sub-goals at P_i, but in a different way
 - no need to repeat search: same sub-goals at same layer still cannot be achieved
 - generalization: same some sub-goals at same or earlier layer still cannot be achieved
 - otherwise no-op would achieve sub-goal at later layer
The nogood Table

- **nogood table** (denoted ∇) for planning graph up to layer k:
 - array of k sets of sets of goal propositions
 - inner set: one combination of propositions that cannot be achieved
 - outer set: all combinations that cannot be achieved (at that layer)

- before searching for set g in P_j:
 - check whether $g \in \nabla(j)$

- when search for set g in P_j has failed:
 - add g to $\nabla(j)$

The nogood Table

- **nogood table** (denoted ∇) for planning graph up to layer k:
 - array of k sets of sets of goal propositions
 - inner set: one combination of propositions that cannot be achieved
 - outer set: all combinations that cannot be achieved (at that layer)

- mutex only gives pairs of propositions that cannot be achieved together, **nogood table** gives impossible tuples

- before searching for set g in P_j:
 - check whether $g \in \nabla(j)$
 - actually: in j or later layer

- when search for set g in P_j has failed:
 - add g to $\nabla(j)$
 - or move?
Pseudo Code: extract

function extract(G, g, i)
 if i=0 then return ∅
 if g ∈ ∇(i) then return failure
 Π ← gpSearch(G, g, {}, i)
 if Π≠failure then return Π
 ∇(i) ← ∇(i) + g
 return failure

Pseudo Code: extract

- function extract(G, g, i)
 - inputs: planning graph G, set of propositions (sub-goals) g, and layer at which sub-goals need to be achieved i
 - output: a layered plan ⟨π₁, ..., πᵢ⟩ that achieves g at i in G or failure if there is no such plan
 - if i=0 then return ∅
 - trivial success with empty plan
 - if g ∈ ∇(i) then return failure
 - sub-goals have resulted in failure before
 - πᵢ ← gpSearch(G, g, {}, i)
 - perform the search
 - if πᵢ!=failure then return πᵢ
 - the search was successful
 - ∇(i) ← ∇(i) + g
 - unsuccessful search: remember unachievable sub-goals
 - return failure
Pseudo Code: gpSearch

```plaintext
function gpSearch(G, g, π, i)
    if g={} then
        ∏ ← extract(G, U_a∈π precond(a), i-1)
        if ∏ = failure then return failure
        return ∏ ∘ 〈π〉
        p ← g.selectOne()
        providers ← {a∈Ai | p∈effects⁺(a) and ¬∃a'∈π: (a,a')∈μA}
        if providers={} then return failure
        a ← providers.chooseOne()
        return GPSearch(G, g-effects⁺(a), π+a, i)
```

Pseudo Code: gpSearch

- function gpSearch(G, g, π, i)
 - inputs: planning graph G, remaining sub-goals g, and set of actions already committed to π, both at level i
 - outputs: layered plan
- if g={} then
 - all actions chosen
 - ∏ ← extract(G, U_a∈π precond(a), i-1)
 - if ∏ = failure then return failure
 - return ∏ ∘ 〈π〉
 - p ← g.selectOne()
 - no need to backtrack here; order only important for efficiency
- providers ← {a∈Ai | p∈effects⁺(a) and ¬∃a'∈π: (a,a')∈μA}
- if providers={} then return failure
- a ← providers.chooseOne()
 - non-deterministic choice point; backtrack to here
- return GPSearch(G, g-effects⁺(a), π+a, i)
Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Forward Planning Graph Expansion
- Backwards Search in the Planning Graph
- The Graphplan Algorithm
function graphplan(A,s,g)
 i ← 0; ∇ ← []; P₀ ← s; G ← (P₀,[])
 while (gP_i or $g^2\mu P_i$) and ¬fixedPoint(G) do
 i ← i+1; expand(G)
 if gP_i or $g^2\mu P_i$ then return failure
 η ← fixedPoint(G) ? |∇(κ)| : 0
 ∏ ← extract(G,g,i)
 while ∏=failure do
 i ← i+1; expand(G)
 ∏ ← extract(G,g,i)
 if ∏=failure and fixedPoint(G) then
 if η=|∇(κ)| then return failure
 η ← |∇(κ)|
 return ∏
Graphplan Properties

• **Proposition**: The Graphplan algorithm is sound, complete, and always terminates.
 – It returns failure iff the given planning problem has no solution;
 – otherwise, it returns a layered plan \(\Pi \) that is a solution to the given planning problem.

• Graphplan is orders of magnitude faster than previous techniques!

• caveat: restriction to propositional STRIPS
Overview

• A Propositional DWR Example
• The Basic Planning Graph (No Mutex)
• Layered Plans
• Mutex Propositions and Actions
• Forward Planning Graph Expansion
• Backwards Search in the Planning Graph
• The Graphplan Algorithm