Artificial Intelligence Planning

Hierarchical Planning
Example: Decomposition Tree

move-stack(p1, p2)
move-topmost(p1, p2)
recursive-move(p1, p2, c1, c2)
take(crane, loc, c1, c2, p1)
put(crane, loc, c1, pallet, p2)
move-stack(p1, p2)
move-topmost(p1, p2)
take(crane, loc, c2, c3, p1)
put(crane, loc, c2, c1, p2)
move-stack(p1, p2)
move-topmost(p1, p2)
take(crane, loc, c3, pallet, p1)
put(crane, loc, c3, c2, p2)
no-move(p1, p2)
recursive-move(p1, p2, c3, pallet)
take-and-put(…)
recursive-move(p1, p2, c3, pallet)
take-and-put(…)

Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
 - now: a different view of planning: “tasks to do” vs. “goals to achieve”
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning
STN Planning

• STN: Simple Task Network
• what remains:
 – terms, literals, operators, actions, state transition function, plans
• what’s new:
 – tasks to be performed
 – methods describing ways in which tasks can be performed
 – organized collections of tasks called task networks
DWR Stack Moving Example

- task: move stack of containers from pallet p1 to pallet p3 in a way that preserves the order

- (informal) methods:
 - move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 - move stack: repeatedly move the topmost container until the stack is empty
 - move topmost: take followed by put action

DWR Stack Moving Example

- task: move stack of containers from pallet p1 to pallet p3 in a way that preserves the order
 - preserve order: each container should be on same container it is on originally

- (informal) methods:
 - methods: possible subtasks and how they can be accomplished
 - move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 - move stack: repeatedly move the topmost container until the stack is empty
 - move topmost: take followed by put action
 - action: no further decomposition required

- note: abstract concept: stack
Tasks

- **task symbols**: $T_S = \{t_1, \ldots, t_n\}$
 - operator names $\nsubseteq T_S$: primitive tasks
 - non-primitive task symbols: T_S - operator names
- **task**: $t(r_1, \ldots, r_k)$
 - t: task symbol (primitive or non-primitive)
 - r_1, \ldots, r_k: terms, objects manipulated by the task
 - ground task: are ground
- **action** $a = op(c_1, \ldots, c_k)$ accomplishes ground primitive task $t(r_1, \ldots, r_k)$ in state s iff
 - name(a) = t_i and $c_1 = r_1$ and \ldots and $c_k = r_k$ and
 - a is applicable in s

Tasks
- **task symbols**: $T_S = \{t_1, \ldots, t_n\}$
 - used for giving unique names to tasks
- **operator names** $\nsubseteq T_S$: primitive tasks
- **non-primitive task symbols**: T_S - operator names
- **task**: $t_i(r_1, \ldots, r_k)$
 - t_i: task symbol (primitive or non-primitive)
 - tasks: primitive iff task symbol is primitive
 - r_1, \ldots, r_k: terms, objects manipulated by the task
 - ground task: are ground
- **action** a accomplishes ground primitive task $t_i(r_1, \ldots, r_k)$ in state s iff
 - action $a = (name(a), precond(a), effects(a))$
 - name(a) = t_i and
 - a is applicable in s
 - applicability: s satisfies precond(a)
- note: unique operator names, hence primitive tasks can only be performed in one way – no search!
Simple Task Networks

• A simple task network w is an acyclic directed graph (U,E) in which
 – the node set $U = \{t_1, \ldots, t_n\}$ is a set of tasks and
 – the edges in E define a partial ordering of the tasks in U.

• A task network w is ground/primitive if all tasks $t_i \in U$ are ground/primitive, otherwise it is unground/non-primitive.
Totally Ordered STNs

- ordering: $t_u < t_v$ in $w=(U,E)$ iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: $\langle t_1, \ldots, t_n \rangle$
- Let $w = \langle t_1, \ldots, t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\pi(w) = \langle a_1, \ldots, a_n \rangle$ where $a_i = t_i; \ 1 \leq i \leq n$

Totally Ordered STNs

- ordering: $t_u < t_v$ in $w=(U,E)$ iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: $\langle t_1, \ldots, t_n \rangle$
 - sequence is special case of acyclic directed graph
 - t_1: first task in U; t_2: second task in U; \ldots; t_n: last task in U
- Let $w = \langle t_1, \ldots, t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $\pi(w) = \langle a_1, \ldots, a_n \rangle$ where $a_i = t_i; \ 1 \leq i \leq n$
STNs: DWR Example

• tasks:
 – \(t_1 = \text{take(crane,loc,c1,c2,p1)} \): primitive, ground
 – \(t_2 = \text{take(crane,loc,c2,c3,p1)} \): primitive, ground
 – \(t_3 = \text{move-stack(p1,q)} \): non-primitive, unground

• task networks:
 – \(w_1 = (\{t_1,t_2,t_3\}, \{(t_1,t_2), (t_1,t_3)\}) \)
 • partially ordered, non-primitive, unground
 – \(w_2 = (\{t_1,t_2\}, \{(t_1,t_2)\}) \)
 • totally ordered: \(w_2 = (t_1,t_2) \), ground, primitive
 • \(\pi(w_2) = \langle \text{take(crane,loc,c1,c2,p1)}, \text{take(crane,loc,c2,c3,p1)} \rangle \)

STNs: DWR Example
• tasks:
 • \(t_1 = \text{take(crane,loc,c1,c2,p1)} \): primitive, ground
 • crane “crane” at location “loc” takes container “c1” of container “c2” in pile “p1”
 • \(t_2 = \text{take(crane,loc,c2,c3,p1)} \): primitive, ground
 • \(t_3 = \text{move-stack(p1,q)} \): non-primitive, unground
 • move the stack of containers on pallet “p2” to pallet “q” (variable)

• task networks:
 • \(w_1 = (\{t_1,t_2,t_3\}, \{(t_1,t_2), (t_1,t_3)\}) \)
 • partially ordered, non-primitive, unground
 • \(w_2 = (\{t_1,t_2\}, \{(t_1,t_2)\}) \)
 • totally ordered: \(w_2 = (t_1,t_2) \), ground, primitive
 • \(\pi(w_2) = \langle \text{take(crane,loc,c1,c2,p1)}, \text{take(crane,loc,c2,c3,p1)} \rangle \)
Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
• Domains, Problems and Solutions
• Planning with Task Networks
• General HTN Planning

Overview

• **Tasks and Task Networks**
 - just done: a different view of planning: “tasks to do” vs. “goals to achieve”

 ➢ **Methods (Refinements)**
 - now: methods that describe how to break down tasks into simpler sub-tasks

• **Decomposition of Tasks**
• **Domains, Problems and Solutions**
• **Planning with Task Networks**
• **General HTN Planning**
STN Methods

- Let \(M_S \) be a set of method symbols. An **STN method** is a 4-tuple \(m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{network}(m)) \) where:
 - \(\text{name}(m) \):
 - the name of the method
 - syntactic expression of the form \(n(x_1, \ldots, x_k) \)
 - \(n \in M_S \): unique method symbol
 - \(x_1, \ldots, x_k \): all the variable symbols that occur in \(m \);
 - \(\text{task}(m) \): a non-primitive task;
 - \(\text{precond}(m) \): set of literals called the method's preconditions;
 - \(\text{network}(m) \): task network \((U, E) \) containing the set of subtasks \(U \) of \(m \).

STN Methods

- Let \(M_S \) be a set of method symbols. An **STN method** is a 4-tuple \(m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{network}(m)) \) where:
 - method symbols: disjoint from other types of symbols
 - STN method: also just called method
 - \(\text{name}(m) \):
 - the name of the method
 - unique name: no two methods can have the same name; gives an easy way to unambiguously refer to a method instances
 - syntactic expression of the form \(n(x_1, \ldots, x_k) \)
 - \(n \in M_S \): unique method symbol
 - \(x_1, \ldots, x_k \): all the variable symbols that occur in \(m \);
 - no "local" variables in method definition (may be relaxed in other formalisms)
 - \(\text{task}(m) \): a non-primitive task;
 - what task can be performed with this method
 - non-primitive: contains subtasks
 - \(\text{precond}(m) \): set of literals called the method’s preconditions;
 - like operator preconditions: what must be true in state \(s \) for \(m \) to be applicable
 - no effects: not needed if problem is to refine/perform a task as opposed to achieving some effect
 - \(\text{network}(m) \): task network \((U, E) \) containing the set of subtasks \(U \) of \(m \).
 - describes one way of performing the task \(\text{task}(m) \); other methods may describe different way of performing same task: search!
 - method is totally ordered iff network is totally ordered
STN Methods: DWR Example (1)

• move topmost: take followed by put action
• take-and-put\((c,k,l,p_0,p_d,x_o,x_d)\)
 – task: move-topmost\((p_0,p_d)\)
 – precond: top\((c,p_o)\), on\((c,x_o)\), attached\((p_o,l)\), belong\((k,l)\), attached\((p_d,l)\), top\((x_d,p_d)\)
 – subtasks: \{(take\((k,l,c,x_o,p_o)\), put\((k,l,c,x_d,p_d)\))\}

STN Methods: DWR Example (1)
• move topmost: take followed by put action
 • simplest method from previous example
• take-and-put\((c,k,l,p_0,p_d,x_o,x_d)\)
 • using crane \(k\) at location \(l\), take container \(c\) from object \(x_o\) (container or pallet) in pile \(p_o\) and put it onto object \(x_d\) in pile \(p_d\) \((o\) for origin, \(d\) for destination)
• task: move-topmost\((p_0,p_d)\)
 • move topmost container from pile \(p_0\) to pile \(p_d\)
• precond:
 • top\((c,p_o)\), on\((c,x_o)\): pile must be empty with container \(c\) on top
 • attached\((p_o,l)\), belong\((k,l)\), attached\((p_d,l)\): piles and crane must be at same location
 • top\((x_d,p_d)\): destination object must be top of its pile
• subtasks: \{(take\((k,l,c,x_o,p_o)\), put\((take\((k,l,c,x_d,p_d)\))\)\)
 • simple macro operator combining two (primitive) operators (sequentially)
STN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container until the stack is empty

• recursive-move(p_o,p_d,c,x_o)
 • task: move-stack(p_o,p_d)
 • precond: top(c,p_o), on(c,x_o)
 • subtasks: \{move-topmost(p_o,p_d), move-stack(p_o,p_d)\}

• no-move(p_o,p_d)
 • task: move-stack(p_o,p_d)
 • precond: top(pallet,p_o)
 • subtasks: {}
STN Methods: DWR Example (3)

• move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

• move-stack-twice(\(p_o, p_i, p_d\))
 – task: move-ordered-stack(\(p_o, p_d\))
 – precond: -
 – subtasks: \(\langle \text{move-stack}(p_o, p_i), \text{move-stack}(p_i, p_d) \rangle\)

STN Methods: DWR Example (3)

• move via intermediate: move stack to intermediate pallet (reversing order) and then to final destination (reversing order again)

• move-stack-twice(\(p_o, p_i, p_d\))
 - move the stack of containers in pile \(p_o\) first to intermediate pile \(p_i\), then to \(p_d\), thus preserving the order

• task: move-ordered-stack(\(p_o, p_d\))
 - move the stack from \(p_o\) to \(p_d\) in an order-preserving way

• precond: -
 - none; should mention that piles must be at same location and different

• subtasks: \(\langle \text{move-stack}(p_o, p_i), \text{move-stack}(p_i, p_d) \rangle\)
 - the two stack moves
Applicability and Relevance

• A method instance m is **applicable** in a state s if
 – $\text{precond}^+(m) \subseteq s$ and
 – $\text{precond}^-(m) \cap s = \{\}$.

• A method instance m is **relevant** for a task t if
 – there is a substitution σ such that $\sigma(t) = \text{task}(m)$.

• The **decomposition** of a task t by a relevant method m under σ is
 – $\delta(t, m, \sigma) = \sigma(\text{network}(m))$ or
 – $\delta(t, m, \sigma) = \sigma(\langle \text{subtasks}(m) \rangle)$ if m is totally ordered.
Method Applicability and Relevance: DWR Example

- task \(t = \text{move-stack}(p1,q) \)
- state \(s \) (as shown)

- method instance \(m_i = \text{recursive-move}(p1,p2,c1,c2) \)
 - \(m_i \) is applicable in \(s \)
 - \(m_i \) is relevant for \(t \) under \(\sigma = \{q\leftarrow p2\} \)
Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
• Domains, Problems and Solutions
• Planning with Task Networks
• General HTN Planning

Overview

• Tasks and Task Networks
• Methods (Refinements)
 • just done: methods that describe how to break down tasks into simpler sub-tasks

➢ Decomposition of Tasks
 • now: using methods to refine task networks (state-transitions)

• Domains, Problems and Solutions
• Planning with Task Networks
• General HTN Planning
Method Decomposition: DWR Example

\[\delta(t, m, \sigma) = \langle \text{move-topmost}(p_1, p_2), \text{move-stack}(p_1, p_2) \rangle \]

- \[\delta(t, m, \sigma) = \langle \text{move-topmost}(p_1, p_2), \text{move-stack}(p_1, p_2) \rangle\]
- [figure]

- graphical representation (called a decomposition tree):
 - view as AND/OR-graph: AND link – both subtasks need to be performed to perform super-task
 - link is labelled with substitution and method instance used
 - arrow under label indicates order in which subtasks need to be performed
 - often leave out substitution (derivable) and sometimes method parameters (to save space)
Decomposition of Tasks in STNs

• Let
 – \(w = (U, E) \) be a STN and
 – \(t \in U \) be a task with no predecessors in \(w \) and
 – \(m \) a method that is relevant for \(t \) under some substitution \(\sigma \) with
 \(\text{network}(m) = (U_m, E_m) \).

• The decomposition of \(t \) in \(w \) by \(m \) under \(\sigma \) is the STN
 \(\delta(w, t, m, \sigma) \) where:
 – \(t \) is replaced in \(U \) by \(\sigma(U_m) \) and
 – edges in \(E \) involving \(t \) are replaced by edges to appropriate nodes
 in \(\sigma(U_m) \).

Decomposition of Tasks in STNs

• idea: applying a method to a task in a network results in another network

• Let
 – \(w = (U, E) \) be a STN and
 – \(t \in U \) be a task with no predecessors in \(w \) and
 – \(m \) a method that is relevant for \(t \) under some substitution \(\sigma \) with
 \(\text{network}(m) = (U_m, E_m) \).

• The decomposition of \(t \) in \(w \) by \(m \) under \(\sigma \) is the STN
 \(\delta(w, t, m, \sigma) \) where:
 – \(t \) is replaced in \(U \) by \(\sigma(U_m) \) and
 – edges in \(E \) involving \(t \) are replaced by edges to appropriate nodes
 in \(\sigma(U_m) \).

 • every node in \(\sigma(U_m) \) should come before nodes that came after \(t \) in \(E \)
 • \(\sigma(E_m) \) needs to be added to \(E \) to preserve internal method ordering
 • ordering constraints must ensure that \(\text{precond}(m) \) remains true even
 after subsequent decompositions
Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
• Domains, Problems and Solutions
• Planning with Task Networks
• General HTN Planning

Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
 • just done: using methods to refine task networks (state-transitions)

• Domains, Problems and Solutions
 • now: defining the semantics of STN planning problems and solutions

• Planning with Task Networks
• General HTN Planning
STN Planning Domains

• An STN planning domain is a pair $\mathcal{D}=(O,M)$ where:
 – O is a set of STRIPS planning operators and
 – M is a set of STN methods.

• \mathcal{D} is a total-order STN planning domain if every $m \in M$ is totally ordered.
An STN planning problem is a 4-tuple $\mathcal{P}=(s_i, w_i, O, M)$ where:

- s_i is the initial state (a set of ground atoms)
- w_i is a task network called the initial task network and
- $\mathcal{D}=(O, M)$ is an STN planning domain.

\mathcal{P} is a total-order STN planning problem if w_i and \mathcal{D} are both totally ordered.
A plan \(\pi = \langle a_1, \ldots, a_n \rangle \) is a solution for an STN planning problem \(\mathcal{P} = (s_i, w_i, O, M) \) if:

- if \(\pi \) is a solution for \(\mathcal{P} \), then we say that \(\pi \) accomplishes \(\mathcal{P} \)

 intuition: there is a way to decompose \(w_i \) into \(\pi \) such that:

 - \(\pi \) is executable in \(s_i \) and
 - each decomposition is applicable in an appropriate state of the world

- \(w_i \) is empty and \(\pi \) is empty;

- or:

 - there is a primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(a_1 = t \) is applicable in \(s_i \) and
 - \(\pi' = \langle a_2, \ldots, a_n \rangle \) is a solution for \(\mathcal{P}' = (\gamma(s_i, a_1), w_i \setminus \{t\}, O, M) \)

- or:

 - there is a non-primitive task \(t \in w_i \) that has no predecessors in \(w_i \) and
 - \(m \in M \) is relevant for \(t \), i.e. \(\sigma(t) = \text{task}(m) \) and applicable in \(s_i \) and
 - \(\pi \) is a solution for \(\mathcal{P}' = (s_i, \delta(w_i, t, m, \sigma), O, M) \).

2\(^{nd}\) and 3\(^{rd}\) case: recursive definition

- if \(w_i \) is not totally ordered more than one node may have no predecessors and both cases may apply
Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
• Domains, Problems and Solutions
 • just done: defining the semantics of STN planning problems and solutions

➢ Planning with Task Networks
 • now: two algorithms for solving STN planning problems

• General HTN Planning
function Ground-TFD(s,〈t₁,…,tₖ〉,O,M)
 if k=0 return ⊘
 if t₁.isPrimitive() then
 actions = {(a,σ) | a=σ(t₁) and a applicable in s}
 if actions.isEmpty() then return failure
 (a,σ) = actions.chooseOne()
 plan ← Ground-TFD(γ(s,a),σ(〈t₂,…,tₖ〉),O,M)
 if plan = failure then return failure
 else return ⟨a⟩∙plan
 else
 methods = {(m,σ) | m is relevant for σ(t₁) and m is applicable in s}
 if methods.isEmpty() then return failure
 (m,σ) = methods.chooseOne()
 plan ← subtasks(m) • σ(〈t₂,…,tₖ〉)
 return Ground-TFD(s,plan,O,M)

Ground-TFD: Pseudo Code

• TFD = Total-order Forward Decomposition; direct implementation of definition of
 STN solution
• function Ground-TFD(s,〈t₁,…,tₖ〉,O,M)
 • if k=0 return ⊘
 • if t₁.isPrimitive() then
 • actions = {(a,σ) | a=σ(t₁) and a applicable in s}
 • if actions.isEmpty() then return failure
 • (a,σ) = actions.chooseOne()
 • plan ← Ground-TFD(γ(s,a),σ(〈t₂,…,tₖ〉),O,M)
 • if plan = failure then return failure
 • else return ⟨a⟩ • plan
 • else t₁ is non-primitive
 • methods = {(m,σ) | m is relevant for σ(t₁) and m is applicable in s}
 • if methods.isEmpty() then return failure
 • (m,σ) = methods.chooseOne()
 • plan ← subtasks(m) • σ(〈t₂,…,tₖ〉)
 • return Ground-TFD(s,plan,O,M)
Decomposition Tree: DWR Example

- choose method: recursive-move(p1,p2,c1,c2) – binds variable q
- decompose into two sub-tasks
 - choose method for first subtask: take-and-put: c1 from c2 onto pallet
 - decompose into subtasks – primitive subtasks (grey) cannot be decomposed/correspond to actions
 - choose method for second sub-task: recursive-move (recursive part)
 - decompose (recursive)
 - choose method and decompose (into primitive tasks): take-and-put: c2 from c3 onto c1
 - choose method and decompose (recursive)
 - choose method and decompose: take-and-put: c3 from pallet onto c2
 - choose method (no-move) and decompose (empty plan)

- note:
 - (grey) leaf nodes of decomposition tree (primitive tasks) are actions of solution plan
 - (blue) inner nodes represent non-primitive task; decomposition results in sub-tree rooted at task according to decomposition function δ
 - no search required in this example
TFD vs. Forward/Backward Search

• choosing actions:
 – TFD considers only applicable actions like forward search
 – TFD considers only relevant actions like backward search

• plan generation:
 – TFD generates actions execution order; current world state always known

• lifting:
 – Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search

TFD vs. Forward/Backward Search

• choosing actions:
 • TFD considers only applicable actions like forward search
 • TFD considers only relevant actions like backward search
 • TFD combines advantages of both search directions – better efficiency

• plan generation:
 • TFD generates actions execution order; current world state always known
 • e.g. good for domain-specific heuristics

• lifting:
 • Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search
 • avoids generating unnecessarily many actions (smaller branching factor)
 • works for initial task list that is not ground
function Ground-PFD(s,w,O,M)
 if w.U={} return \(\langle \rangle \)
 task \(\leftarrow \{t \in U \mid t \text{ has no predecessors in } w.E\} \).chooseOne()
 if task.isPrimitive() then
 actions = \(\{(a,\sigma) \mid a=\sigma(t) \text{ and } a \text{ applicable in } s\} \)
 if actions.isEmpty() then return failure
 \((a,\sigma) = \) actions.chooseOne()
 plan \(\leftarrow \) Ground-PFD(γ(s,a),σ(w-{task}),O,M)
 if plan = failure then return failure
 else return \(\langle a \rangle \cdot plan \)
 else
 methods = \(\{(m,\sigma) \mid m \text{ is relevant for } \sigma(t) \text{ and } m \text{ is applicable in } s\} \)
 if methods.isEmpty() then return failure
 \((m,\sigma) = \) methods.chooseOne()
 return Ground-PFD(s, δ(w,task,m,σ),O,M)
Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview
- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
 - just done: two algorithms for solving STN planning problems

General HTN Planning
 - now: generalizing the STN planning problem and approach
Preconditions in STN Planning

- STN planning constraints:
 - ordering constraints: maintained in network
 - preconditions:
 - enforced by planning procedure
 - must know state to test for applicability
 - must perform forward search

- HTN Planning
 - additional bookkeeping maintains general constraints explicitly
HTN Methods

- Let M_S be a set of method symbols. An HTN method is a 4-tuple $m=(\text{name}(m), \text{task}(m), \text{subtasks}(m), \text{constr}(m))$ where:
 - $\text{name}(m)$:
 - the name of the method
 - syntactic expression of the form $n(x_1,\ldots,x_k)$
 - $n \in M_S$: unique method symbol
 - x_1,\ldots,x_k: all the variable symbols that occur in m
 - $\text{task}(m)$: a non-primitive task
 - $(\text{subtasks}(m), \text{constr}(m))$: a hierarchical task network (HTN).

HTN Methods

- extension of the definition of an STN method

- Let M_S be a set of method symbols. An HTN method is a 4-tuple $m=(\text{name}(m), \text{task}(m), \text{subtasks}(m), \text{constr}(m))$ where:
 - $\text{name}(m)$:
 - the name of the method
 - syntactic expression of the form $n(x_1,\ldots,x_k)$
 - $n \in M_S$: unique method symbol
 - x_1,\ldots,x_k: all the variable symbols that occur in m
 - $\text{task}(m)$: a non-primitive task
 - $(\text{subtasks}(m), \text{constr}(m))$: a hierarchical task network (HTN).
HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o,p_d)
 - network:
 - subtasks: $\{t_1=\text{take}(k,l,c,x_o,p_o), t_2=\text{put}(k,l,c,x_o,p_d)\}$
 - constraints: $\{t_1 < t_2, \text{before}(\{t_1\}, \text{top}(c,p_o)), \text{before}(\{t_1\}, \text{on}(c,x_o)), \text{before}(\{t_1\}, \text{attached}(p_o,l)), \text{before}(\{t_1\}, \text{belong}(k,l)), \text{before}(\{t_2\}, \text{attached}(p_d,l)), \text{before}(\{t_2\}, \text{top}(x_d,p_d))\}$

• note: before-constraints refer to both tasks; more precise than STN representation of preconditions
HTN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container until the stack is empty
• recursive-move(p_o, p_d, c, x_o)
 – task: move-stack(p_o, p_d)
 – network:
 • subtasks: \(t_1 = \text{move-topmost}(p_o, p_d), \ t_2 = \text{move-stack}(p_o, p_d) \)
 • constraints: \(t_1 < t_2, \ \text{before}((t_1), \ \text{top}(c, p_o)), \ \text{before}((t_1), \ \text{on}(c, x_o)) \)
• move-one(p_o, p_d, c)
 – task: move-stack(p_o, p_d)
 – network:
 • subtasks: \(t_1 = \text{move-topmost}(p_o, p_d) \)
 • constraints: \(\text{before}((t_1), \ \text{top}(c, p_o)), \ \text{before}((t_1), \ \text{on}(c, \text{pallet})) \)

HTN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container until the stack is empty
• recursive-move(p_o, p_d, c, x_o)
 • task: move-stack(p_o, p_d)
 • network:
 • subtasks: \(t_1 = \text{move-topmost}(p_o, p_d), \ t_2 = \text{move-stack}(p_o, p_d) \)
 • constraints: \(t_1 < t_2, \ \text{before}((t_1), \ \text{top}(c, p_o)), \ \text{before}((t_1), \ \text{on}(c, x_o)) \)
• move-one(p_o, p_d, c)
 • task: move-stack(p_o, p_d)
 • network:
 • subtasks: \(t_1 = \text{move-topmost}(p_o, p_d) \)
 • constraints: \(\text{before}((t_1), \ \text{top}(c, p_d)), \ \text{before}((t_1), \ \text{on}(c, \text{pallet})) \)
 • note: problem with no-move: cannot add before-constraint when there are no tasks

• move-stack-twice(p_o, p_i, p_d) trivial; not shown again
HTN vs. STRIPS Planning

• Since
 – HTN is generalization of STN Planning, and
 – STN problems can encode undecidable problems, but
 – STRIPS cannot encode such problems:

• **STN/HTN formalism is more expressive**
 • non-recursive STN can be translated into equivalent STRIPS problem
 – but exponentially larger in worst case
 • “regular” STN is equivalent to STRIPS

HTN vs. STRIPS Planning

• Since
 • HTN is generalization of STN Planning, and
 • STN problems can encode undecidable problems, but
 • STRIPS cannot encode such problems:

• **STN/HTN formalism is more expressive**
 • non-recursive STN can be translated into equivalent STRIPS problem
 • but exponentially larger in worst case

• “regular” STN is equivalent to STRIPS
 • non-recursive
 • at most one non-primitive subtask per method
 • non-primitive sub-task must be last in sequence
Overview

• Tasks and Task Networks
• Methods (Refinements)
• Decomposition of Tasks
• Domains, Problems and Solutions
• Planning with Task Networks
• General HTN Planning