Artificial Intelligence Planning

Plan-Space Search
Example: Partial Plan

1: move(robot, loc1, loc2)
 - preconditions: adjacent(loc1, loc2)
 - effects: at(robot, loc2), ¬occupied(loc2), at(robot, loc1), ¬occupied(loc1)

2: load(crane, loc1, cont, robot)
 - preconditions: belong(crane, loc1), holding(crane, cont), at(robot, loc1), empty(crane), loaded(robot, cont)
 - effects: empty(crane), ¬holding(crane, cont), ¬loaded(robot, cont)

3: move(robot, loc2, loc1)
 - preconditions: adjacent(loc2, loc1)
 - effects: at(robot, loc1), ¬occupied(loc1), at(robot, loc2), ¬occupied(loc2)

0: goal
 - at(robot, loc2), ¬unloaded(robot)
Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm
- PSP Implementation Details
- Partial-Order Planning

Search States: Partial Plans

- now: introducing a completely different search space with partial plans as search states

Plan Refinement Operations

The Plan-Space Search Problem

Flawless Partial Plans

The PSP Algorithm

PSP Implementation Details

Partial-Order Planning
State-Space vs. Plan-Space Search

• state-space search: search through graph of nodes representing world states
• plan-space search: search through graph of partial plans
 – nodes: partially specified plans
 – arcs: plan refinement operations
 – solutions: partial-order plans

State-Space vs. Plan-Space Search
• state-space search: search through graph of nodes representing world states
 • search space directly corresponds to graph representation of state-transition system
• plan-space search: search through graph of partial plans
 • nodes: partially specified plans
 • arcs: plan refinement operations
 • least commitment principle: do not add constraints to the plan that are not strictly needed
 • solutions: partial-order plans
 • partial-order plan: set of actions + set of orderings; not necessarily total order
 • state-space algorithms also maintain partial plan – but always in total order
Partial Plans

• plan: set of actions organized into some structure
• partial plan:
 – subset of the actions
 – subset of the organizational structure
 • temporal ordering of actions
 • rationale: what the action achieves in the plan
 – subset of variable bindings

Partial Plans
• plan: set of actions organized into some structure
 • organization e.g. sequence
• partial plan:
 • subset of the actions
 • subset of the organizational structure
 • temporal ordering of actions
 • rationale: what the action achieves in the plan
 • refers only to subset of actions
• subset of variable bindings
• plan refinement operators accordingly: add actions, add ordering constraints, add causal links, add variable bindings
Definition of Partial Plans

A partial plan is a tuple $\pi = (A, \prec, B, L)$, where:

- $A = \{a_1, \ldots, a_k\}$ is a set of partially instantiated planning operators;
- \prec is a set of ordering constraints on A of the form $(a_i \prec a_j)$;
- B is a set of binding constraints on the variables of actions in A of the form $x = y$, $x \neq y$, or $x \in D_x$;
- L is a set of causal links of the form $(a_i \rightarrow [p] \leftarrow a_j)$ such that:
 - a_i and a_j are actions in A;
 - the constraint $(a_i \prec a_j)$ is in \prec;
 - proposition p is an effect of a_i and a precondition of a_j; and
 - the binding constraints for variables in a_i and a_j appearing in p are in B.

- sub-goals in a partial plan: preconditions without causal links
- different view: partial plan as set of (sequential) plans
 - those that meet the specified constraints and can be refined to a total order plan by adding constraints
- note: partial plans with two types of additional flexibility:
 - actions only partially ordered and
 - not all variables need to be instantiated
Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning

Overview

• Search States: Partial Plans
 • just done: introducing a completely different search space with partial plans as search states

➢ Plan Refinement Operations
 • now: state transitions in the new search space – refining partial plans

• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning
Adding Actions

• partial plan contains actions
 – initial state
 – goal conditions
 – set of operators with different variables

• reason for adding new actions
 – to achieve unsatisfied preconditions
 – to achieve unsatisfied goal conditions

Adding Actions
• partial plan contains actions
 • initial state
 • goal conditions
 • can be represented as two actions with only effects or preconditions
 • set of operators with different variables
• least commitment principle: introduce actions only for a reason
• reason for adding new actions
 • to achieve unsatisfied preconditions
 • to achieve unsatisfied goal conditions
• note: new actions can be added anywhere in the current partial plan
Adding Actions: Example

- empty plan:
 - initial state: all initially satisfied conditions (green)
 - goal: conditions that need to be satisfied (red)
- add operator: 1: `move(r_1, l_1, m_1)`
 - number (1) to provide unique reference to this operator instance
 - also used as variable index for unique variables
 - least commitment principle: choose values for variables only when necessary
- add operator: 2: `load(k_2, l_2, c_2, r_2)`
Adding Causal Links

• partial plan contains causal links
 – links from the provider
 • an effect of an action or
 • an atom that holds in the initial state
 – to the consumer
 • a precondition of an action or
 • a goal condition

• reasons for adding causal links
 – prevent interference with other actions

Adding Causal Links
• partial plan contains causal links
 • links from the provider
 • an effect of an action or
 • an atom that holds in the initial state
 • to the consumer
 • a precondition of an action or
 • a goal condition
• causal link implies ordering constraint
 • but: provider need not come directly before consumer

• reasons for adding causal links
 • prevent interference with other actions
 • keeping track of rationale: any action inserted between provider and consumer must not clobber conditions in causal link
 • preconditions without a causal link pointing to them are open sub-gaols
Adding Causal Links: Example

• add link from 1:move to goal
 • changes colour of goal to green – now satisfied
• add link from 2:load to goal
• add link from initial state to 1:move
Adding Variable Bindings

- partial plan contains variable bindings
 - new operators introduce new (copies of) variables into the plan
 - solution plan must contain actions
 - variable binding constraints keep track of possible values for variables and co-designation
- reasons for adding variable bindings
 - to turn operators into actions
 - to unify and effect with the precondition it supports
Adding Variable Bindings: Example

• bind variables due to causal link:
 • bind r_1 to robot
 • bind m_1 to loc2
 • note: variables in operator no longer red to indicate they are bound
• clobbering: move may also destroy goal condition
• introduce variable inequality: $l_1 \neq \text{loc2}$
• clobbering now impossible
• introduce causal link from initial state
• bind l_1 to loc1
 • note consistency with inequality
Adding Ordering Constraints

- partial plan contains ordering constraints
 - binary relation specifying the temporal order between actions in the plan
- reasons for adding ordering constraints
 - all actions after initial state
 - all actions before goal
 - causal link implies ordering constraint
 - to avoid possible interference

Adding Ordering Constraints
- partial plan contains ordering constraints
 - binary relation specifying the temporal order between actions in the plan
 - temporal relation: qualitative, not quantitative (at this stage)
- reasons for adding ordering constraints
 - all actions after initial state
 - all actions before goal
 - causal link implies ordering constraint
 - to avoid possible interference
 - interference can be avoided by ordering the potentially interfering action before the provider or after the consumer of a causal link
 - least commitment principle: introduce ordering constraints only if necessary
- result: solution plan not necessarily totally ordered
Adding Ordering Constraints: Example

• ordering constraints
 • due to causal links
 • also: all actions before goal
• ordering: all actions after initial state
• orderings may occur between actions
Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm
- PSP Implementation Details
- Partial-Order Planning

Overview
- Search States: Partial Plans
- Plan Refinement Operations
 - just done: state transitions in the new search space – refining partial plans
- The Plan-Space Search Problem
 - now: definition of the plan-space search problem and solutions
- Flawless Partial Plans
- The PSP Algorithm
- PSP Implementation Details
- Partial-Order Planning
Plan-Space Search: Initial Search State

• represent initial state and goal as dummy actions
 – init: no preconditions, initial state as effects
 – goal: goal conditions as preconditions, no effects

• empty plan \(\pi_0 = \langle \{\text{init}, \text{goal}\}, \{(\text{init} \prec \text{goal})\}, \{\}, \{\} \rangle \):
 – two dummy actions init and goal;
 – one ordering constraint: init before goal;
 – no variable bindings; and
 – no causal links.

Plan-Space Search: Initial Search State

• problem: plan space representation does not maintain states, but need to give initial state and goal description

• represent initial state and goal as dummy actions
 • init: no preconditions, initial state as effects
 • goal: goal conditions as preconditions, no effects

• empty plan \(\pi_0 = \langle \{\text{init}, \text{goal}\}, \{(\text{init} \prec \text{goal})\}, \{\}, \{\} \rangle \):
 • two dummy actions init and goal;
 • one ordering constraint: init before goal;
 • no variable bindings; and
 • no causal links.
Plan-Space Search: Initial Search State Example

- note empty box for preconditions in init and empty box for effects in goal
Plan-Space Search: Successor Function

• states are partial plans
• generate successor through plan refinement operators (one or more):
 – adding an action to A
 – adding an ordering constraint to \prec
 – adding a binding constraint to B
 – adding a causal link to L

Plan-Space Search: Successor Function
• states are partial plans
• generate successor through plan refinement operators (one or more):
 • more required to keep partial plans consistent, e.g. adding a causal link implies adding an ordering constraint
 • adding an action to A
 • adding an ordering constraint to \prec
 • adding a binding constraint to B
 • adding a causal link to L

• successors must be consistent: constraints in a partial plan must be satisfiable
• plan-space planning decouple two sub-problems:
 • which actions need to be performed
 • how to organize these actions
• partial plan as set of plans: refinement operation reduces the set to smaller subset
• next: to define planning as plan-space search problem: need to define goal state
Let \(\mathcal{P} = (\Sigma, s_0, g) \) be a planning problem. A plan \(\pi \) is a solution for \(\mathcal{P} \) if \(\gamma(s_0, \pi) \) satisfies \(g \).

Problem: \(\gamma(s_0, \pi) \) only defined for sequence of ground actions
- partial order corresponds to total order in which all partial order constraints are respected
- partial instantiation corresponds to grounding in which variables are assigned values consistent with binding constraints

Total vs. Partial Order

- Let \(\mathcal{P} = (\Sigma, s_0, g) \) be a planning problem. A plan \(\pi \) is a solution for \(\mathcal{P} \) if \(\gamma(s_0, \pi) \) satisfies \(g \).

 - solution defined for state transition system

 - problem: \(\gamma(s_0, \pi) \) only defined for sequence of ground actions
 - partial order corresponds to total order in which all partial order constraints are respected
 - partial ordering is consistent iff it is free of loops
 - note: there may be an exponential number of total ordering consistent with a given partial ordering

 - partial instantiation corresponds to grounding in which variables are assigned values consistent with binding constraints
 - note: exponential combinatorics of assigning values to variables
Partial Order Solutions

- Let $\mathcal{P} = (\Sigma, s_i, g)$ be a planning problem. A plan $\pi = (A, <, B, L)$ is a (partial order) solution for \mathcal{P} if:
 - its ordering constraints $<$ and binding constraints B are consistent; and
 - for every sequence $\langle a_1, \ldots, a_k \rangle$ of all the actions in A-{init, goal} that is
 - totally ordered and grounded and respects $<$ and B
 - $\gamma(s_i, \langle a_1, \ldots, a_k \rangle)$ must satisfy g.

- note: causal links do not play a role in the definition of a solution
- with exponential number of sequences to check, definition is not very useful (as computational procedure for goal test)
- idea: use causal links to verify that every precondition of every action is supported by some other action
 - problem: condition not strong enough
Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
- Flawless Partial Plans
- The PSP Algorithm
- PSP Implementation Details
- Partial-Order Planning

Overview

- Search States: Partial Plans
- Plan Refinement Operations
- The Plan-Space Search Problem
 - just done: definition of the plan-space search problem and solutions (without goal test)
- Flawless Partial Plans
 - now: the goal test that completes the search problem
- The PSP Algorithm
- PSP Implementation Details
- Partial-Order Planning
Threat: Example

- start with partial plan from previous example (grounded; initial state not shown due to limited space on slide)
- introduce new 3:move action to achieve at(robot,loc1) precondition of 2:load action
 - note: still many unachieved preconditions – not a solution yet
- add causal link to maintain rationale
- add ordering to be consistent with causal link
- new: label causal link with condition it protects
- threat: effect of 1:move is negation of condition protected by causal link
 - if 1:move is executed between 3:move and 2:load the plan is no longer valid
- possible solution: additional ordering constraint
Threats

• An action a_k in a partial plan $\pi = (A,\prec, B, L)$ is a threat to a causal link $\langle a, \lnot[p]\rightarrow a_j \rangle$ iff:
 – a_k has an effect $\lnot q$ that is possibly inconsistent with p, i.e. q and p are unifiable;
 – the ordering constraints $(a_i \prec a_k)$ and $(a_k \prec a_j)$ are consistent with \prec; and
 – the binding constraints for the unification of q and p are consistent with B.

Threats

An action a_k in a partial plan $\pi = (A,\prec, B, L)$ is a threat to a causal link $\langle a, \lnot[p]\rightarrow a_j \rangle$ iff:

• a_k has an effect $\lnot q$ that is possibly inconsistent with p, i.e. q and p are unifiable;

• the ordering constraints $(a_i \prec a_k)$ and $(a_k \prec a_j)$ are consistent with \prec; and

• the binding constraints for the unification of q and p are consistent with B.

Flaws

• A flaw in a plan $\pi = (A, <, B, L)$ is either:
 – an unsatisfied sub-goal, i.e. a precondition of an action in A without a causal link that supports it; or
 – a threat, i.e. an action that may interfere with a causal link.
Flawless Plans and Solutions

• **Proposition:** A partial plan \(\pi = (A, \prec, B, L) \) is a solution to the planning problem \(\mathcal{P} = (\Sigma, s_i, g) \) if:
 - \(\pi \) has no flaw;
 - the ordering constraints \(\prec \) are not circular; and
 - the variable bindings \(B \) are consistent.

• **Proof:** by induction on number of actions in \(A \)
 - base case: empty plan
 - induction step: totally ordered plan minus first step is solution implies plan including first step is a solution:
 \[
 \gamma(s_p, \langle a_1, \ldots, a_k \rangle) = \gamma(\gamma(s_p, a_1), \langle a_2, \ldots, a_k \rangle)
 \]

Flawless Plans and Solutions

• Proposition: A partial plan \(\pi = (A, \prec, B, L) \) is a solution to the planning problem \(\mathcal{P} = (\Sigma, s_i, g) \) if:
 • \(\pi \) has no flaw;
 • the ordering constraints \(\prec \) are not circular; and
 • the variable bindings \(B \) are consistent.

• Computation:
 • let partial plans in the search space only violate the first condition (have flaws)
 • partial plans that violate either of the last two conditions cannot be refined into a solution and need not be generated

• Proof: by induction on number of actions in \(A \)
 • base case: empty plan
 • no flaws – every goal condition is supported by causal link from initial state
 • induction step: totally ordered plan minus first step is solution implies plan including first step is a solution:
 \[
 \gamma(s_p, \langle a_1, \ldots, a_k \rangle) = \gamma(\gamma(s_p, a_1), \langle a_2, \ldots, a_k \rangle)
 \]
 • truncated plan is solution to different problem
Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning

Overview
• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
 • just done: the goal test that completes the search problem

➢ The PSP Algorithm
 • now: a generic plan-space search planning algorithm

• PSP Implementation Details
• Partial-Order Planning
Plan-Space Planning as a Search Problem

• given: statement of a planning problem $P = (O, s, g)$
• define the search problem as follows:
 – initial state: $\pi_0 = \{(\text{init}, \text{goal}), \{(\text{init} \prec \text{goal})\}, \emptyset, \emptyset\}$
 – goal test for plan state ρ: ρ has no flaws
 – path cost function for plan π: $|\pi|$
 – successor function for plan state ρ: refinements of ρ that maintain \prec and B

• note: plan space may be infinite even when state space is finite
PSP Procedure: Basic Operations

• PSP: Plan-Space Planner
• main principle: refine partial π plan while maintaining \prec and B consistent until π has no more flaws
• basic operations:
 – find the flaws of π, i.e. its sub-goals and its threats
 – select one of the flaws
 – find ways to resolve the chosen flaw
 – choose one of the resolvers for the flaw
 – refine π according to the chosen resolver

PSP Procedure: Basic Operations
• PSP: Plan-Space Planner
• main principle: refine partial π plan while maintaining \prec and B consistent until π has no more flaws
• basic operations:
 • find the flaws of π, i.e. its sub-goals and its threats
 • simple for empty plan – all goal conditions are unachieved sub-goals and no threats
 • select one of the flaws
 • find ways to resolve the chosen flaw
 • choose one of the resolvers for the flaw
 • refine π according to the chosen resolver
 • modify the plan in such a way that \prec and B are in a consistent state for the generated successor
 • aim: no need to verify consistency of \prec and B for goal test
PSP: Pseudo Code

function PSP(plan)
 allFlaws ← plan.openGoals() + plan.threats()
 if allFlaws.empty() then return plan
 flaw ← allFlaws.selectOne()
 allResolvers ← flaw.getResolvers(plan)
 if allResolvers.empty() then return failure
 resolver ← allResolvers.chooseOne()
 newPlan ← plan.refine(resolver)
 return PSP(newPlan)

• PSP: Pseudo Code
• function PSP(plan)
 • refines the given partial plan into a solution plan; start with initial plan \(\pi_0 \)
• allFlaws ← plan.openGoals() + plan.threats()
• if allFlaws.empty() then return plan
 • see proposition in previous section: no flaws implies solution
• flaw ← allFlaws.selectOne()
• allResolvers ← flaw.getResolvers(plan)
 • represents all possible ways of removing the selected flaw from the partial plan
• if allResolvers.empty() then return failure
 • no resolvers means plan cannot be made flawless
• resolver ← allResolvers.chooseOne()
• newPlan ← plan.refine(resolver)
 • must maintain consistency of \(\prec \) and \(B \); new plan may contain new flaws
• return PSP(newPlan)
PSP: Choice Points

- **resolver** ← `allResolvers.chooseOne()`
 - non-deterministic choice
- **flaw** ← `allFlaws.selectOne()`
 - deterministic selection
 - all flaws need to be resolved before a plan becomes a solution
 - order not important for completeness
 - order is important for efficiency

- for finding first plan, not so for finding all plans
- deterministic implementation: using IDA*, for example
Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning

PSP Implementation Details

• just done: a generic plan-space search planning algorithm (overview)

• Partial-Order Planning
Implementing `plan.openGoals()`

• finding unachieved sub-goals (incrementally):
 – in π_0: goal conditions
 – when adding an action: all preconditions are unachieved sub-goals
 – when adding a causal link: protected proposition is no longer unachieved
Implementing plan.threats()

- finding threats (incrementally):
 - in π_0: no threats
 - when adding an action a_{new} to $\pi = (A,\prec,B,L)$:
 - for every causal link $\langle a_i,[-p]\rightarrow a_j \rangle \in L$
 - if $(a_{\text{new}}\prec a_i)$ or $(a_j\prec a_{\text{new}})$ then next link
 - if $\exists \sigma: \sigma(p)=\sigma(\neg q)$ then q of a_{new} threatens $\langle a_i,[-p]\rightarrow a_j \rangle$
 - when adding a causal link $\langle a_i,[-p]\rightarrow a_j \rangle$ to $\pi = (A,\prec,B,L)$:
 - for every action $a_{\text{old}} \in A$
 - if $(a_{\text{old}}\prec a_i)$ or $(a_j=a_{\text{old}})$ or $(a_j\prec a_{\text{old}})$ then next action
 - else for every effect q of a_{old}
 - if $\exists \sigma: \sigma(p)=\sigma(\neg q)$ then q of a_{old} threatens $\langle a_i,[-p]\rightarrow a_j \rangle$
Implementing `flaw.getResolvers(plan)`

• for unachieved precondition \(p \) of \(a_g \):
 - add causal links to an existing action:
 • for every action \(a_{old} \in A \)
 - if \((a_g = a_{old}) \) or \((a_g < a_{old}) \) then next action
 - else for every effect \(q \) of \(a_{old} \)
 - if \((\exists \sigma: \sigma(p) = \sigma(q)) \) then adding
 \(<a_{old} - \sigma(p) \rightarrow a_g> \) is a resolver
 - add a new action and a causal link:
 • for every effect \(q \) of every operator \(o \)
 - if \((\exists \sigma: \sigma(p) = \sigma(q)) \) then adding
 \(a_{new} = o.newInstance() \) and
 \(<a_{new} - \sigma(p) \rightarrow a_g> \) is a resolver
Implementing `flaw.getResolvers(plan)`

- for effect \(q \) of action \(a_i \) threatening \(\langle a_i, [p] \rightarrow a_j \rangle \):
 - order action before threatened link:
 - if \((a_i = a_j) \) or \((a_i \prec a_j) \) then not a resolver
 else adding \((a_i \prec a_j) \) is a resolver
 - order threatened link before action:
 - if \((a_i = a_j) \) or \((a_i \prec a_j) \) then not a resolver
 else adding \((a_i \prec a_j) \) is a resolver
 - extend variable bindings such that unification fails:
 - for every variable \(v \) in \(p \) or \(q \)
 if \(v \not\equiv \sigma(v) \) is consistent with \(B \) then
 adding \(v \not\equiv \sigma(v) \) is a resolver

Implementing `flaw.getResolvers(plan)`

- for effect \(q \) of action \(a_i \) threatening \(\langle a_i, [p] \rightarrow a_j \rangle \):
 - order action before threatened link:
 - if \((a_i = a_j) \) or \((a_j \prec a_i) \) then not a resolver
 else adding \((a_i \prec a_j) \) is a resolver
 - order threatened link before action:
 - if \((a_i = a_j) \) or \((a_i \prec a_j) \) then not a resolver
 else adding \((a_j \prec a_i) \) is a resolver
 - extend variable bindings such that unification fails:
 - for every variable \(v \) in \(p \) or \(q \)
 if \(v \not\equiv \sigma(v) \) is consistent with \(B \) then
 adding \(v \not\equiv \sigma(v) \) is a resolver
Implementing \textit{plan.refine(resolver)}

- refines partial plan with elements in resolver by adding:
 - an ordering constraint;
 - one or more binding constraints;
 - a causal link; and/or
 - a new action.
- no testing required
- must update flaws:
 - unachieved preconditions (see: \textit{plan.openGoals()})
 - threats (see: \textit{plan.threats()})
Maintaining Ordering Constraints

• required operations:
 – query whether \((a_i, a_j)\)
 – adding \((a_i, a_j)\)
• possible internal representations:
 – maintain set of predecessors/successors for each action as given
 – maintain only direct predecessors/successors for each action
 – maintain transitive closure of \(<\) relation

Maintaining Ordering Constraints

• required operations:
 • query whether \((a_i, a_j)\)
 • adding \((a_i, a_j)\)
 • without consistency testing
• possible internal representations:
 • maintain set of predecessors/successors for each action as given
 • maintain only direct predecessors/successors for each action
 • maintain transitive closure of \(<\) relation
 • operations have different time and space complexity
• note: query performed more often than addition
Maintaining Variable Binding Constraints

• types of constraints:
 – unary constraints: \(x \in D_x \)
 – equality constraints: \(x = y \)
 – inequalities: \(x \neq y \)

• note: general CSP problem is NP-complete

Maintaining Variable Binding Constraints
• types of constraints:
 • unary constraints: \(x \in D_x \)
 • equality constraints: \(x = y \)
 • unary and equality constraints can be solved in linear time
 • inequalities: \(x \neq y \)
 • inequalities give rise to general CSP problem
• note: general CSP problem is NP-complete
PSP: Sound and Complete

• **Proposition**: The PSP procedure is sound and complete: whenever \(\pi_0 \) can be refined into a solution plan, \(\text{PSP}(\pi_0) \) returns such a plan.

• **Proof**:
 – soundness: \(\prec \) and \(B \) are consistent at every stage of the refinement
 – completeness: induction on the number of actions in the solution plan

• **note**: non-deterministic version is complete, deterministic implementation must avoid infinite branches
Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning

Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
 • just done: functions for identifying flaws and resolving them (used in PSP)

Partial-Order Planning
 • now: the algorithm implemented by the UCPOP planner
PSP: Data Flow

• deterministic step: selecting a flaw
 • no backtracking required
 • selection important for efficiency
 • heuristic guidance required
• non-deterministic step: choosing a resolver for a flaw
 • implemented as backtracking
 • order in which resolvers are tried important for efficiency
 • heuristic guidance required
• note: admissible heuristics (A^*) must have step cost greater than zero
PSP Implementation: PoP

- **extended input:**
 - partial plan (as before)
 - agenda: set of pairs \((a,p)\) where \(a\) is an action and \(p\) is one of its preconditions
- **search control by flaw type**
 - unachieved sub-goal (on agenda): as before
 - threats: resolved as part of the successor generation process

PSP Implementation: PoP

- based on UCPOP
- **extended input:**
 - partial plan (as before)
 - agenda: set of pairs \((a,p)\) where \(a\) is an action and \(p\) is one of its preconditions
 - initial agenda: one pair for each precondition of the goal step
- **search control by flaw type**
 - unachieved sub-goal (on agenda): as before
 - threats: resolved as part of the successor generation process
PoP: Pseudo Code (1)

```plaintext
function PoP(plan, agenda)
    if agenda.empty() then return plan
    (a_g, p_g) ← agenda.selectOne()
    agenda ← agenda - (a_g, p_g)
    relevant ← plan.getProviders(p_g)
    if relevant.empty() then return failure
    (a_p, p_p, σ) ← relevant.chooseOne()
    plan.L ← plan.L ∪ ⟨a_p - [σ(p_p)] → a_g⟩
    plan.B ← plan.B ∪ σ
```

PoP: Pseudo Code (1)

- function PoP(plan, agenda)
- if agenda.empty() then return plan
- (a_g, p_g) ← agenda.selectOne()
 - deterministic choice point
- agenda ← agenda - (a_g, p_g)
- relevant ← plan.getProviders(p_g)
 - finds all actions
 - either from within the plan or
 - from new instances of an operator
 - that have an effect that unifies with condition
- if relevant.empty() then return failure
- (a_p, p_p, σ) ← relevant.chooseOne()
 - non-deterministic choice point
- plan.L ← plan.L ∪ ⟨a_p - [p] → a_g⟩
- plan.B ← plan.B ∪ σ
 - must succeed for elements of relevant
PoP: Pseudo Code (2)

if $a_p \notin \text{plan.A}$ then
 \text{plan.add}(a_p)
 \text{agenda} \leftarrow \text{agenda} + a_p.\text{preconditions}
 \text{newPlan} \leftarrow \text{plan}
 \text{for each threat on } (a_p \rightarrow p) \text{ or due to } a_p \text{ do}
 \text{allResolvers} \leftarrow \text{threat.getResolvers(\text{newPlan})}
 \text{if allResolvers.empty() then return failure}
 \text{resolver} \leftarrow \text{allResolvers.chooseOne()}
 \text{newPlan} \leftarrow \text{newPlan.refine(resolver)}
 \text{return PoP(\text{newPlan,agenda})}

PoP: Pseudo Code (2)
• if $a_p \notin \text{plan.A}$ then
 • if the action is new and needs to be added to the plan
 • plan.add(a_p)
 • involves updating set of actions and ordering constraints
 • agenda \leftarrow agenda + a_p.preconditions
 • all preconditions of the new action are new sub-goals
 • newPlan \leftarrow plan
 • for each threat on $(a_p \rightarrow p)$ or due to a_p do
 • note: two sources of threats are treated identically
 • allResolvers \leftarrow threat.getResolvers(newPlan)
 • if allResolvers.empty() then return failure
 • resolver \leftarrow allResolvers.chooseOne()
 • second non-deterministic choice point
 • newPlan \leftarrow newPlan.refine(resolver)
 • note: loop does not add to agenda
 • return PSP(newPlan,agenda)
State-Space vs. Plan-Space Planning

- **State-Space Planning**
 - Finite search space
 - Explicit representation of intermediate states
 - Action ordering reflects control strategy
 - Causal structure only implicit
 - Search nodes relatively simple and successors easy to compute

- **Plan-Space Planning**
 - Infinite search space
 - No intermediate states
 - Choice of actions and organization independent
 - Explicit representation of rationale
 - Search nodes are complex and successors expensive to compute

State-Space vs. Plan-Space Planning

- **State-space planning vs. plan-space planning**
 - **Finite search space vs. infinite search space**
 - Important: portion of search space explored/generated; both search trees potentially infinite
 - **Explicit representation of intermediate states vs. no intermediate states**
 - Explicit representation allows for efficient domain specific heuristics and control knowledge
 - **Action ordering reflects control strategy vs. choice of actions and organization independent**
 - **Causal structure only implicit vs. explicit representation of rationale**
 - Important for plan execution
 - **Search nodes relatively simple and successors easy to compute vs. search nodes are complex and successors expensive to compute**
Overview

• Search States: Partial Plans
• Plan Refinement Operations
• The Plan-Space Search Problem
• Flawless Partial Plans
• The PSP Algorithm
• PSP Implementation Details
• Partial-Order Planning

just done: the algorithm implemented by the UCPOP planner