AI Planning

Dr. Gerhard Wickler & Prof. Austin Tate
University of Edinburgh
Planning

explicit deliberation process that chooses and organizes actions by anticipating their outcomes
** moves a robot between two adjacent locations

** (action move
 parameters (?r - robot ?from ?to - location)
 precondition (and
 (adjacent ?from ?to) (at ?r ?from)
 (not (occupied ?to)))
 effect (and
 (at ?r ?to) (occupied ?to)
 (not (occupied ?from)) (not (at ?r ?from))))

The successor function \(\Gamma_m : 2^S \rightarrow 2^S \) for a STRIPS domain \(\Sigma = (S, A, \gamma) \) is defined as:

\[\Gamma(s) = \{ \gamma(s, a) \mid a \in A \text{ and } a \text{ applicable in } s \} \]

\[\Gamma({s_1, \ldots, s_n}) = \bigcup_{k \in [1, n]} \Gamma(s_k) \]

\[\Gamma_0({s_1, \ldots, s_n}) = \{ s_1, \ldots, s_n \} \]

\[\Gamma_m({s_1, \ldots, s_n}) = \Gamma(\Gamma_{m-1}({s_1, \ldots, s_n})) \]

The transitive closure of \(\Gamma \) defines the set of all reachable states:

\[\Gamma^>(s) = \bigcup_{k \in [0, \infty]} \Gamma_k({s}) \]

function fwdSearch(\(O, s_i, g \))

\(\text{state} \leftarrow s_i \)
\(\text{plan} \leftarrow \langle \rangle \)

loop
 if state satisfies(\(g \)) then return \(\text{plan} \)
 \(\text{applicables} \leftarrow \{ \text{ground instances from } O \text{ applicable in } \text{state} \} \)
 if applicables isEmpty() then return failure
 \(\text{action} \leftarrow \text{applicables.chooseOne()} \)
 \(\text{state} \leftarrow \gamma(\text{state}, \text{action}) \)
 \(\text{plan} \leftarrow \text{plan} \cdot \langle \text{action} \rangle \)
return \(\text{plan} \)
AI Planning

Dr. Gerhard Wickler & Prof. Austin Tate
University of Edinburgh